1. 难度:简单 | |
若成等比数列,则关于的方程( ) 必有两个不等实根 必有两个相等实根 必无实根 以上三种情况均有可能
|
2. 难度:简单 | |
在中,若则为( ) 或 或
|
3. 难度:简单 | |
在和8之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积为 ( ) A.8 B.±8 C.16 D.±16
|
4. 难度:简单 | |
在中,已知,则( )
|
5. 难度:简单 | |
已知数列与则它们所有公共项的个数为( )
|
6. 难度:简单 | |
等差数列的前项和为,前项和为,则它的前的和为( )
|
7. 难度:简单 | |
若成等比数列,是的等差中项,是的等差中项,则( )
|
8. 难度:简单 | |
某人朝正东方向走后,向右转然后朝新方向走结果他离出发点恰好 那么的值为( ) 或
|
9. 难度:简单 | |
在中,则一定是( ) 等腰三角形 等边三角形 锐角三角形 钝角三角形
|
10. 难度:简单 | |
在等差数列中,,,则的值是 ( ) A.15 B.30 C.-31 D.64
|
11. 难度:简单 | |
数列的前项和为,若,则等于 ( ) A.1 B. C. D.
|
12. 难度:简单 | |
在有限数列{an}中,Sn是{an}的前n项和,若把称为数列{an}的“优化和”,现有一个共2006项的数列{an}:a1,a2,a3,…,a2006,若其“优化和”为2007,则有2007项的数列1,a1,a2,a3,…,a2006的“优化和”为( ) A.2005 B.2006 C.2007 D.2008
|
13. 难度:简单 | |
在等差数列中,已知则 .
|
14. 难度:困难 | |
在中,已知边的中线那么 .
|
15. 难度:简单 | |
数列的前项和则它的通项公式是__________.
|
16. 难度:简单 | |
在中,面积为,则 .
|
17. 难度:简单 | |
有四个互不相等实数,前个成等比数列,它们的积为,后个数成等差数列,它们的和为,求这四个数。
|
18. 难度:简单 | |
在中,在边上,且 ⑴求AC的长;⑵求的面积。
|
19. 难度:简单 | |
已知等差数列⑴.问这个数列的前多少项的和最大?⑵.并求最大值。
|
20. 难度:简单 | |
已知数列{an}的前n项和为Sn,首项为a1,且1,an,Sn成等差数列(n∈N+) (1)求数列{an}的通项公式; (2)设Tn为数列{}的前n项和,求Tn
|
21. 难度:中等 | |
如图,都在同一个与水平面垂直的平面内,为两岛上的两座灯塔的塔顶.测量船于水面处测得点和点的仰角分别为,,于水面处测得点和点的仰角均为,,试探究图中间距离与另外哪两点距离相等,然后求的距离(计算结果精确到,)
|
22. 难度:中等 | |
已知⑴.设的图像的顶点的纵坐标构成数列求证:为等差数列。⑵.设的图像的顶点到轴的距离构成求的前项和。
|