1. 难度:简单 | |
若z1=a+2i,z2=3-4i,且为纯虚数,则实数a的值是
|
2. 难度:简单 | |
设随机变量X的概率分布是P(X=k)=, 为常数, 其中k=1,2,3,则a=__ __。
|
3. 难度:简单 | |
若X~H(3,5,8),则P(X=2)=
|
4. 难度:简单 | |
若,则 。
|
5. 难度:简单 | |||||||||||||||||||||||||||||||||||||
计算机中常用的十六进制是逢进的计数制,采用数字和字母共个计数符号,这些符号与十进制的数字的对应关系如下表:
例如,用十六进制表示,则_____________。
|
6. 难度:简单 | |
从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有 个.(用数字作答)
|
7. 难度:简单 | |
已知| z | =1, 则| z-3+4i |的最大值=_____________。
|
8. 难度:简单 | |
在的展开中,的系数是 。
|
9. 难度:简单 | |
已知方程x2 - ( 1 - i )x + m + 2i = 0有实根,若m Î R,求m= 。
|
10. 难度:简单 | ||||||||||||||||
下面是高考第一批录取的一份志愿表:
现有4所重点院校,每所院校有3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是 。
|
11. 难度:简单 | |
互为共轭复数,且则=____________。
|
12. 难度:简单 | |
是展开式中的第五项,则= ,各二项式系数的和为
|
13. 难度:简单 | |
口袋有个白球和个黑球,一次取出个球,发现是同一种颜色的球,求他们是黑球的概率 。
|
14. 难度:简单 | |||||
某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:
则该公司一年后估计可获收益的期望是__________(元).
|
15. 难度:简单 | |
用数字0、1、2、3、4、5组成没有重复数字 (1)可以组成多少个六位数? (2)可以组成多少个能被3整除的四位数? (3)可以组成多少个大于324105的六位数?
|
16. 难度:简单 | |
已知均为实数,且 ,求证:中至少有一个大于。
|
17. 难度:简单 | |
从一副52张(去掉大小王)的扑克牌中任取一张,求: (1)这张牌是红桃的概率是多少? (2)这张牌有人头像(J,Q,K)的概率是多少? (3)这张牌是红桃的条件下,有人头像的概率是多少
|
18. 难度:简单 | |
设和分别是从1,2,3,4这四个数中随机选取的数,用随机变量X表示方程的实根的个数(重根按一个计)。 (1)求方程有实根的概率;(2)求随机变量X的分布列和数学期望; (3)若中至少有一个为3,求方程有实根的概率。
|
19. 难度:简单 | |
已知数列满足,且() (1)求,,(2)由(1)猜想的通项公式; (3)用数学归纳法证明(2)的结果。
|
20. 难度:简单 | |
(1)若的展开式中,的系数是的系数的倍,求; (2)已知的展开式中, 的系数是的系数与的系数的等差中项,求; (3)已知的展开式中,二项式系数最大的项的值等于,求。
|