1. 难度:简单 | |
设a,b,c,d∈R,且a>b,c<d,则下列结论中正确的是( ) A.a+c>b+d B.a-c>b-d C.ac>bd D.>
|
2. 难度:简单 | |
在△中,若,则此三角形解的情况为( ) A. 无解 B. 一解 C. 两解 D.解的个数不能确定
|
3. 难度:简单 | |
数列中第10项是 ( ) A. B. C. D.
|
4. 难度:简单 | |
等差数列{an}中,a2+a6=8,a3+a4=3,那么它的公差是 ( ) A.4 B.5 C.6 D.7
|
5. 难度:简单 | |
数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为 ( ) A.4 B.8 C.15 D.31
|
6. 难度:简单 | |
△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=60°,则c的值等于 ( ) A.5 B.13 C. D.
|
7. 难度:简单 | |
化简的结果是 ( ) A. B. C. D.
|
8. 难度:简单 | |
已知:则 ( ) A. 2 B. C.1 D.
|
9. 难度:简单 | |
( ) A. B. C. D.
|
10. 难度:简单 | |
在△中, ( ) A. B. C. D.
|
11. 难度:简单 | |
在等比数列{an}中,如果为 ( ) A. B. C. D.
|
12. 难度:简单 | |
、函数的定义域为 ( ) A. B. C. D.
|
13. 难度:简单 | |
.
|
14. 难度:简单 | |
=_________.
|
15. 难度:简单 | |
数列{an}的通项公式an=2n-48,数列的前项和为,则Sn达到最小时,n等于________.
|
16. 难度:简单 | |
设数列的前项和为,若= .
|
17. 难度:简单 | |
(本小题满分10分) 在△ABC中,BC=7,AB=3,且=. (1)求AC; (2)求∠A.
|
18. 难度:简单 | |
(本小题满分10分) 等差数列中,已知,求数列的通项公式.
|
19. 难度:简单 | |
|
20. 难度:简单 | |
(本小题满分12分) 等比数列中,,求
|
21. 难度:简单 | |
(本小题满分12分) 有四个正数,前三个数成等差数列,其和为48,后三个数成等比数列,其最后一个数为函数的最大值,求这四个数.
|
22. 难度:简单 | |
(本小题满分14分) 已知函数. (1)求的最小正周期; (2)写出函数的单调递减区间 (3)函数的图象可由的图象经过怎样的变换得到?
|