1. 难度:简单 | |
设集合,,则有( )
|
2. 难度:简单 | |
函数的图像关于( ) 轴对称 原点对称 轴对称 直线对称
|
3. 难度:简单 | |
函数的定义域是( )
|
4. 难度:简单 | |
下列四组函数中,表示相等函数的一组是( )
|
5. 难度:简单 | |
设,则的值为( )
|
6. 难度:简单 | |
下列各不等式中成立的是( )
|
7. 难度:简单 | |
设函数,则 .
|
8. 难度:简单 | |
化简的值为 .
|
9. 难度:简单 | |
如果函数是偶函数,则的值是 .
|
10. 难度:简单 | |
函数的定义域是,且最大值与最小值的差为,则 .
|
11. 难度:简单 | |
已知集合若,则= .
|
12. 难度:简单 | |
设,则的值为 .
|
13. 难度:简单 | |
(满分10分) 设全集,且集合,若,求的值.
|
14. 难度:简单 | |
(本大题共2个小题,每小题5分,共10分) (1)若,化简: (2)若,,试用表示
|
15. 难度:简单 | |
(满分10分) 某汽车销售公司以每台10万元的价格销售某种品牌的汽车,可售出该品牌汽车1000台,若将该品牌汽车每台的价格上涨,则销售量将减少,且该品牌汽车每台的价格上涨幅度不超过,问当该品牌汽车每台的价格上涨百分之几,可使销售的总金额最大?
|
16. 难度:简单 | |
(满分10分) 已知,其中为常数 (1)判断在定义域上的单调性并用单调性的定义证明之; (2)若函数的定义域为,求函数的最大值和最小值.
|
17. 难度:简单 | |
(满分6分)函数的大致图像为 ( ).
|
18. 难度:简单 | |
(满分6分)若函数有两个零点,则的取值范围是( )
|
19. 难度:简单 | |
(满分6分)已知函数对任意的实数,满足且,则 ,此函数为 函数(填奇偶性).
|
20. 难度:简单 | |
(满分15分) 设函数, (1)请画出函数的大致图像; (2)若不等式对于任意的恒成立,求实数的取值范围.
|
21. 难度:简单 | |
(满分17分) 已知,函数. (1)当时,求所有使成立的的值; (2)当时,求函数在闭区间上的最大值和最小值; (3) 试讨论函数的图像与直线的交点个数.
|