1. 难度:简单 | |
数集{1,2,x2-3}中的x不能取的数值的集合是---------------( ) A.{2,} B.{ -2,-} C. {2,-} D. {±2,±}
|
2. 难度:简单 | |
设集合M =,N =, 则--( ) A. M=N B. MN C. NM D. MN=
|
3. 难度:简单 | |
集合M={x|}, N={}, 则 MN --( ) A.{0} B.{2} C. D. {
|
4. 难度:简单 | |
以下各组函数中,表示同一函数的是---------------( ) A., B., C., D.,
|
5. 难度:简单 | |
定义集合A、B的一种运算:,若,,则中的所有元素数字之和为-----------( ). A.9 B. 14 C.18 D.21
|
6. 难度:简单 | |
---------------------------( )
|
7. 难度:简单 | |
已知函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y), 且f(2)=4,则f(1)= ( )
A. -2 B. 1 C. 0.5 D. 2
|
8. 难度:简单 | |
已知映射f:AàB,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A 中的元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是( ) A.4 B.5 C.6 D.7
|
9. 难度:简单 | |
如右图,U为全集,M,N是集合U的子集,则阴影部分所表示的集合是-------( ) A.M∩N B.∁U (M∩N) C.(∁U M)∩N D.(∁U N)∩M
|
10. 难度:简单 | |
如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是( ) A.0 B.0 或1 C.1 D.不能确定
|
11. 难度:简单 | |
设函数,则使得的自变量的取值范围是( ) A. B. C. D.
|
12. 难度:简单 | |
x∈R,f(x)是函数y=3-x2与y=2x中较小者,则f(x)的最大值为( ) A. -6 B.2 C.3 D.+∞
|
13. 难度:简单 | |
,则 .
|
14. 难度:简单 | |
函数f(x)=2x2-mx+3,在[-2,+∞)时是增函数,在(-∞,-2]时是减函数,则f(1)等于 .
|
15. 难度:简单 | |
集合到可建立不同的映射的个数为 .
|
16. 难度:简单 | |
如果f[f(x)]=4x+6,且f(x)是递增函数,则一次函数f(x)= .
|
17. 难度:简单 | |
(本题10分)已知,,,求的取值范围。
|
18. 难度:简单 | |
(本题12分)(1)已知f (x+1)=x2+4x+1,求f (x)的解析式; (2)已知f ()=+1,求f (x) 的解析式. (不必写出定义域)
|
19. 难度:简单 | |
(本题12分)已知函数f (x)=x 2+ax ,且对任意的实数x都有f (1+x)=f (1-x) 成立. (1)求实数 a的值; (2)利用单调性的定义证明函数f(x)在区间[1,+∞ 上是增函数.
|
20. 难度:简单 | |
(本题12分)若函数的定义域和值域均为[1,b](b>1),求a,b的值.
|
21. 难度:简单 | |
(本题12分)已知全集,集合AR, B={x∈R|(x-2)(x2+3x-4)=0} (1)若时,存在集合M使得A M B,求出所有这样的集合M; (2)集合A、B是否能满足∁UBA=?若能,求实数的取值范围;若不能,请说明理由.
|
22. 难度:简单 | |
(本题12分)某地区上年度电价为元/kW•h,年用电量为 kW•h.本年度计划将电价降低到0.55元/ kW•h到0.75元/ kW•h之间,而用户期望电价为0.40元/ kW•h.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为),该地区电力的成本价为0.30元/ kW•h. (1)写出本年度电价下调后,电力部门的收益与实际电价之间的函数关系式; (2)设=,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价本价))
|