1. 难度:简单 | |
圆x2+y2-2x+4y-4=0的圆心坐标是( ) A.(-2,4) B.(2,-4) C.(-1,2) D.(1,-2)
|
2. 难度:简单 | |
如果AC<0,BC<0,那么直线Ax+By+C=0不通过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
|
3. 难度:简单 | |
已知等差数列的前n项和为Sn,若等于( ) A.18 B.36 C.54 D.72
|
4. 难度:简单 | |
在空间坐标中,点是在坐标平面内的射影,O为坐标原点,则等于( ) A. B. C. D.
|
5. 难度:简单 | |
已知直线和互相平行,则它们之间的距离是( ) A. 4 B. C. D.
|
6. 难度:简单 | |
如图,正方体ABCD-A1B1C1D1中,M、N、P、Q分别是AB、BC、CD、C1C的中点,直线MN与PQ所成的角的度数是( ) A.45o B.60o C.30o D.90o
|
7. 难度:简单 | |
已知圆:及直线,当直线被截得的弦长为时,则( ) A. B. C. D.
|
8. 难度:简单 | |
三棱锥的三条侧棱两两垂直,则顶点在底面的射影是底面三角形的( ) A、垂心 B、内心 C、外心 D、重心
|
9. 难度:简单 | |
帐篷是重要的救灾物资。某种帐篷的 三视图如图(单位:m),那么生产这 1 样一顶帐篷大约需要篷布 2 正视图 侧视图 A、50 B、52 2 C、54 D、60 2 4 俯视图
|
10. 难度:简单 | |
如果实数x、y满足条件,若有最大值时的满足(>0, >0),则的最小值为( ) A.4 B. C. D.5
|
11. 难度:简单 | |
数列的前n项的和,则此数列的通项公式=
|
12. 难度:简单 | |
过点(1,2)且在两坐标轴上的截距相等的直线的方程 ;
|
13. 难度:简单 | |
设为圆上一动点,则到直线的最大距离是 。
|
14. 难度:简单 | |
过原点O作圆x2+y2-8x=0的弦OA,则弦OA中点M的轨迹方程是 .
|
15. 难度:简单 | |
(本小题满分10分)在等差数列中,,。 (1) 求数列的通项公式; (2) 令,求数列的前项和
|
16. 难度:简单 | |
(本小题满分10分)在△ABC中,内角A,B,C的对边分别为a,b,c, 已知a,b,c成等比数列,且 . (Ⅰ)求的值; (Ⅱ)设的值。
|
17. 难度:简单 | |
(本小题满分10分)如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。 (Ⅰ)求证:EF∥平面SAD; (Ⅱ)设SD=2CD,求二面角A-EF-D的正切值;
|
18. 难度:简单 | |
(本小题满分10分)某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨3元,购面粉每次需支付运费900元。 (1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? (2)若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受九折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
|
19. 难度:简单 | |
(本小题满分10分)已知圆C的圆心在直线y=x+1上,且过点A(1,3),与直线x+2y-7=0相切. (1)求圆C的方程; (2)设直线:与圆C相交于A、B两点,求实数的取值范围; (3)在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点, 若存在,求出实数的值;若不存在,请说明理由.
|