1. 难度:简单 | |
集合,,若,则的值为 ( ) A. 0 B. 1 C. 2 D. 4
|
2. 难度:简单 | |
若,,,则与的夹角为( ) A. B. C. D.
|
3. 难度:简单 | |
已知函数则不等式的解集为( ) A. B. C. D.
|
4. 难度:简单 | |
已知等比数列的公比为正数,且·=2,=1,则= ( ) A. B. C. D. 2
|
5. 难度:简单 | |
函数的值域是 ( ) A. [-1,1] B. [-2,2] C. [0,2] D. [0,1]
|
6. 难度:简单 | |
已知为等比数列的前项和,,若数列也是等比数列,则等于 ( ) A. B. C. D.
|
7. 难度:简单 | |
函数f(x)=(a>0且a≠1)是R上的减函数,则a的取值范围是 ( ) A. (0,1) B. [,1) C. (0,] D. (0,]
|
8. 难度:简单 | |
设,函数的导函数是,且是奇函数 . 若曲线的一条切线的斜率是,则切点的横坐标为 ( ) A. B. C. D.
|
9. 难度:简单 | |
为钝角三角形的充分不必要条件是 ( ) <0 <0 <0 <0 A. (1)(4) B. (2)(4) C. (3)(4) D. (1)(2)(3)
|
10. 难度:简单 | |
设若的最小值为( ) A . 8 B . 4 C . 1 D .
|
11. 难度:简单 | |
已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是 ( ) A. B. C. D.
|
12. 难度:简单 | |
已知为正实数,函数在区间上递增,那么( ) A. 0<≤ B. 0<≤2 C. 0<≤ D. ≥
|
13. 难度:简单 | |
已知f(x)=sinx﹣3cosx,则f(x)的最大值为 .
|
14. 难度:简单 | |
实数满足不等式组则的最小值是 .
|
15. 难度:简单 | |
设f(x)是连续的偶函数,且当x>0时f(x)是单调函数,则满足f(x)=f()的所有x之和为________.
|
16. 难度:简单 | |
已知数列满足则的最小值为__________.
|
17. 难度:简单 | |
(本小题满分10分) 在△ABC中,角A、B、C的对边分别为、、.已知, =,且 (1) 求角C的大小; (2)求△ABC的面积.
|
18. 难度:简单 | |
(本小题满分10分) 已知函数的图像在点处的切线为。 (1)求函数及单调区间; (2)求函数在区间上的最值。
|
19. 难度:简单 | |
(本小题满分10分) 某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用. (1)把房屋总造价表示成的函数,并写出该函数的定义域. (2)当侧面的长度为多少时,总造价最底?最低总造价是多少?
|
20. 难度:简单 | |
(本小题满分12分) 已知数列中,是其前项和,并且, ⑴设数列,求证:数列是等比数列; ⑵设数列,求证:数列是等差数列; ⑶求数列的通项公式及前项和。
|
21. 难度:简单 | |
22. 难度:简单 | |
(本小题满分16分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.
|