1. 难度:简单 | |
条件,条件,则是的( ) (A)充分非必要条件 (B)必要不充分条 (C)充要条件 (D)既不充分也不必要的条件
|
2. 难度:简单 | |
抛物线的准线方程是 ( ) (A) (B)y=2 (C) (D)y=4
|
3. 难度:简单 | |
双曲线的渐近线方程是( ) (A) (B) (C) (D)
|
4. 难度:简单 | |
若曲线的一条切线与直线垂直,则的方程为( ) A. B. C. D.
|
5. 难度:简单 | |
已知双曲线的离心率为,椭圆的离心率为( ) (A) (B) (C) (D)
|
6. 难度:简单 | |
平面内两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是: “点P的轨迹是以A.B为焦点的椭圆”,那么 ( ) A.甲是乙成立的充分不必要条件 B.甲是乙成立的必要不充分条件 C.甲是乙成立的充要条件 D.甲是乙成立的非充分非必要条件
|
7. 难度:简单 | |
若抛物线y2=2px(p>0)上一点到准线和抛物线的对称轴的距离分别为10和6,则该点横坐标为 A.10或 1 B.9或 1 C.10或2 D.9或2
|
8. 难度:简单 | |
将函数的图象向左平移个单位,得到函数的图象,则是 ( ) A. B.cosx C.sinx D.2cosx
|
9. 难度:简单 | |
设 使p是q的必要不充分条件的实数a的范围是( ) A.(-∞,0) B. C.[-2,3] D. (-∞,3]
|
10. 难度:简单 | |
已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是等腰直角三角形,则这个椭圆的离心率是( ) A、 B、 C、 D、
|
11. 难度:简单 | |
设a,b∈R,ab≠0,则直线ax-y+b=0和曲线bx2+ay2=ab的大致图形是 ( )
|
12. 难度:简单 | |
下列命题正确的是( ) ①动点M至两定点A、B的距离之比为常数.则动点M的轨迹是圆。 ②椭圆为半焦距)。 ③双曲线的焦点到渐近线的距离为b。 ④知抛物线y2=2px上两点A(x1,y1),B(x2,y2)且OA⊥OB(O为原点),则y1y2=-p2。 A.②③④ B.①④ C.①②③ D.①③
|
13. 难度:简单 | |
曲线在它们的交点处的两条切线互相垂直,则的值是 .
|
14. 难度:简单 | |
方程无实根,则双曲线的离心率的取值范围为.
|
15. 难度:简单 | |
已知直线与椭圆相交于两点,弦的中点坐标为,则直线的方程为 .
|
16. 难度:简单 | |
给出下列命题: ①若“或”是假命题,则“且”是真命题; ②若实系数关于的二次不等式,的解集为,则必有且; ③ ; ④ . 其中真命题的是 .
|
17. 难度:简单 | |
分别求下面双曲线的标准方程 (1)与双曲线有共同的渐近线,并且经过点 (2)离心率为且过点(4,-)。
|
18. 难度:简单 | |
已知函数图象上一点P(2,f(2))处的切线方程为.求的值;
|
19. 难度:简单 | |
过双曲线的右焦点F作倾斜角为的直线交双曲线于A、B两点,求线段AB的中点C到焦点F的距离
|
20. 难度:简单 | |
动点的轨迹的方程为,过焦点的直线与相交于两点, 为坐标原点。(1)求的值; (2)设,当三角形的面积时,求的取值范围.
|
21. 难度:简单 | |
设椭圆的左右焦点分别为、,是椭圆上的一点,且,坐标原点到直线的距离为. (1)求椭圆的方程; (2) 设是椭圆上的一点,过点的直线交轴于点,交轴于点,若,求直线的斜率.
|
22. 难度:简单 | |
已知动圆C过点A(-2,0),且与圆M:(x-2)2+x2=64相内切 (1)求动圆C的圆心的轨迹方程; (2)设直线l: y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线交于不同两点E,F,问是否存在直线l,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
|