1. 难度:简单 | |
已知复数,则复数z的虚部是( ) A 1 B 2i C -1 D 2
|
2. 难度:简单 | |||||||||||
已知x与y之间的一组数据:
则y与x的线性回归方程为必过( ) A 点 B 点 C 点 D 点
|
3. 难度:简单 | |
已知集合,,则( ) A B C D
|
4. 难度:简单 | |
.若,则( ) A B C D
|
5. 难度:简单 | |
曲线C:(为参数)的普通方程为 ( ) A (x-1)2+(y+1)2=1 B (x+1)2+(y+1)2=1 C (x+1)2+(y-1)2=1 D (x-1)2+(y-1)2=1
|
6. 难度:简单 | |
用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是 ( A 假设三内角都不大于60度; B 假设三内角都大于60度; C 假设三内角至多有一个大于60度; D 假设三内角至多有两个大于60度。
|
7. 难度:简单 | ||||
有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记3的对面的数字为m,4的对面的数字为n,那么m+n的值( ) A 3 B 7 C 8 D 11
|
8. 难度:简单 | |
已知是R上的偶函数,对任意的都有成立,若,则 A 2007 B 2 C 1 D 0
|
9. 难度:简单 | |
右面框图表示的程序所输出的结果是 ( )
|
10. 难度:简单 | |
定义一种运算:,已知函数,那么函数y=的大致图象是( )
|
11. 难度:简单 | |
����= A B C D
|
12. 难度:简单 | |
定义在上的函数满足且时,则 A B C D
|
13. 难度:简单 | |
的定义域为_______。
|
14. 难度:简单 | |
已知在上是增函数, 则的取值范围是_______。
|
15. 难度:简单 | |
已知,则实数m的值为_______。
|
16. 难度:简单 | |
若直线3x+4y+m=0与圆(为参数)没有公共点, 则实数m的取值范围是 .
|
17. 难度:简单 | |
(本小题满分10分) 已知,,求证:不能同时大于。
|
18. 难度:简单 | |
(本小题满分12分) 设关于的不等式的解集为,不等式的解集为, (I)求集合; (II)若求实数的取值范围。w.w
|
19. 难度:简单 | |
(本小题满分12分) 某村计划建造一个室内面积为800的矩形蔬菜温室,在温室内沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积为多少?
|
20. 难度:简单 | |||||||||||||||||
(本小题满分12分) 某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表: 甲厂
乙厂
乙厂
(1)、试分别估计两个分厂生产的零件的优质品率; (2)、由以上统计数据填下面列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。
附:
|
21. 难度:简单 | |
(本小题满分12分) 已知直线 (I)求直线l的参数方程; (II)设直线l与圆相交于M、N两点,求|PM|·|PN|的值。
|
22. 难度:简单 | |
(本小题满分12分) 已知二次函数满足且 (1)求二次函数的解析式。 (2)在区间上,的图像恒在的图像的上方。 求实数m的取值范围。
|