1. 难度:简单 | |
曲线在点(0,1)处的切线方程为 。
|
2. 难度:简单 | |
观察下列等式:,, , , 照此规律, 计算 (N).
|
3. 难度:简单 | |
复数,则复数在复平面内对应的点位于第 象限.
|
4. 难度:简单 | |
若上是减函数,则的取值范围是 __.
|
5. 难度:简单 | |
设,当时,恒成立,则实数的取值范围为 .
|
6. 难度:简单 | |
若是等比数列,是互不相等的正整数,则有正确的结论: .类比上述性质,相应地,若是等差数列,是互不相等的正整数,则有正确的结论: .
|
7. 难度:简单 | |
已知函数(),当时函数的极值为,则 .
|
8. 难度:简单 | |
已知,是的共轭复数,则
|
9. 难度:简单 | |||||||||||||
已知函数的定义域为,部分对应值如表,
的导函数的图象如图所示. 下列关于的命题: ①函数的极大值点为,; ②函数在上是减函数; ③当时,函数有个零点; ④函数的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是 .
|
10. 难度:简单 | |
在复平面内,复数对应的点到直线的距离是 .
|
11. 难度:简单 | |
对大于或等于的自然数的次方幂有如下分解方式:
根据上述分解规律,则, 若的分解中最小的数是73,则的值为 .
|
12. 难度:简单 | |
已知复数,它们在复平面上所对应的点分别为A,B,C,若,则的值是 。
|
13. 难度:简单 | |
蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数.则=_____;=___________.
|
14. 难度:简单 | |
设,函数,若对任意的,都有成立,则实数的取值范围为 .
|
15. 难度:简单 | |
二阶矩阵M对应的变换将点与分别变换成点与. (Ⅰ)求矩阵M的逆矩阵; (Ⅱ)设直线在变换M作用下得到了直线:,求直线的方程.
|
16. 难度:简单 | |
已知复数是纯虚数。 (1)求的值; (2)若复数,满足,求的最大值。
|
17. 难度:简单 | |
设f(n)=1+++ + (n∈N*). 求证:f(1)+f(2)+ +f(n-1)=n·[f(n)-1](n≥2,n∈N*).
|
18. 难度:简单 | |
观察数表 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10
求:(1)这个表的第行里的最后一个数字是多少? (2)第行各数字之和是多少?
|
19. 难度:简单 | |
已知向量=,变换T的矩阵为A=,平面上的点P(1,1)在变换T作用下得到点P′(3,3),求A-1.
|
20. 难度:简单 | |
已知函数 (1)若对任意的恒成立,求实数的最小值. (2)若且关于的方程在上恰有两个不相等的实数根,求实数的取值范围; (3)设各项为正的数列满足:求证:
|