1. 难度:中等 | |
设P={x|x<1},Q={x|x2<4},则P∩Q( ) A.{x|-1<x<2} B.{x|-3<x<-1} C.{x|1<x<-4} D.{x|-2<x<1} |
2. 难度:中等 | |
已知函数f(x)=log2(x+1),若f(α)=1,α=( ) A.0 B.1 C.2 D.3 |
3. 难度:中等 | |
设i为虚数单位,则=( ) A.-2-3i B.-2+3i C.2-3i D.2+3i |
4. 难度:中等 | |
某程序框图如图所示,若输出的S=57,则判断框内为( ) A.k>4? B.k>5? C.k>6? D.k>7? |
5. 难度:中等 | |
设sn为等比数列{an}的前n项和,8a2+a5=0,则=( ) A.-11 B.-8 C.5 D.11 |
6. 难度:中等 | |
设0<x<,则“x sin2x<1”是“x sinx<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
7. 难度:中等 | |
若实数x,y满足不等式组合则x+y的最大值为( ) A.9 B. C.1 D. |
8. 难度:中等 | |
一个空间几何体的三视图及其尺寸如下图所示,则该空间几何体的体积是( ) A. B. C.7 D.14 |
9. 难度:中等 | |
已知x是函数f(x)=2x+的一个零点.若x1∈(1,x),x2∈(x,+∞),则( ) A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0 |
10. 难度:中等 | |
设O为坐标原点,F1,F2是双曲线-=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1PF2=60°,|OP|=a,则该双曲线的渐近线方程为( ) A.x±y=0 B.x±y=0 C.x±y=0 D.x±y=0 |
11. 难度:中等 | |
在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 . |
12. 难度:中等 | |
函数的最小正周期是 . |
13. 难度:中等 | |
已知平面向量,,||=1,||=2,⊥(-2),则|2+|的值是 . |
14. 难度:中等 | ||||||||||||||||||||||||||
在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n行第n+1列的数是 .
|
15. 难度:中等 | |
若正实数x,y满足2x+y+6=xy,则xy的最小值是 . |
16. 难度:中等 | |
某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x的最小值 . |
17. 难度:中等 | |
在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点,在APMC中任取一点记为E,在B、Q、N、D中任取一点记为F,设G为满足向量的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为 . |
18. 难度:中等 | |
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足. (Ⅰ)求角C的大小; (Ⅱ)求sinA+sinB的最大值. |
19. 难度:中等 | |
设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0. (Ⅰ)若S5=5,求S6及a1; (Ⅱ)求d的取值范围. |
20. 难度:中等 | |
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点. (Ⅰ)求证:BF∥平面A′DE; (Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值. |
21. 难度:中等 | |
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b). (I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程; (II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2. 证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4. |
22. 难度:中等 | |
已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线上. (I)若m=2,求抛物线C的方程 (II)设直线l与抛物线C交于A、B,△AA2F,△BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外. |