1. 难度:中等 | |
若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B=( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} |
2. 难度:中等 | |
若复数z1=1+i,z2=3-i,则z1•z2=( ) A.4+2i B.2+i C.2+2i D.3 |
3. 难度:中等 | |
若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数 B.f(x)为奇函数,g(x)为偶函数 C.f(x)与g(x)均为奇函数 D.f(x)为偶函数,g(x)为奇函数 |
4. 难度:中等 | |
已知数列{an}为等比数列,Sn是它的前n项和,若a2•a3=2a1且a4与2a7的等差中项为,则S5=( ) A.35 B.33 C.31 D.29 |
5. 难度:中等 | |
“”是“一元二次方程x2+x+m=0有实数解”的( ) A.充分非必要条件 B.充分必要条件 C.必要非充分条件 D.非充分非必要条件 |
6. 难度:中等 | |
如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC 且3AA′=BB′=CC′=AB,则多面体△ABC-A′B′C′的正视图(也称主视图)是( ) A. B. C. D. |
7. 难度:中等 | |
sin7°cos37°-sin83°cos53°的值为( ) A.- B. C. D.- |
8. 难度:中等 | |
为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是( ) A.1205秒 B.1200秒 C.1195秒 D.1190秒 |
9. 难度:中等 | |
函数f(x)=lg(x-2)的定义域是 . |
10. 难度:中等 | |
若向量,,,满足条件,则x= . |
11. 难度:中等 | |
已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则sinC= . |
12. 难度:中等 | |
若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是 . |
13. 难度:中等 | |
某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1.5,2,则输出的结果s为 . |
14. 难度:中等 | |
如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,,∠OAP=30°,则CP= . |
15. 难度:中等 | |
在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为 . |
16. 难度:中等 | |
已知函数f(x)=Asin(3x+ρ)(A>0,x∈(-∞,+∞),0<ρ<π)在时取得最大值4. (1)求f(x)的最小正周期; (2)求f(x)的解析式; (3)若,求sinα. |
17. 难度:中等 | |
某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示. (1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率. |
18. 难度:中等 | |
如图,是半径为a的半圆,AC为直径,点E为的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足,. (1)证明:EB⊥FD; (2)已知点Q,R为线段FE,FB上的点,,,求平面BED与平面RQD所成二面角的正弦值. |
19. 难度:中等 | |
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? |
20. 难度:中等 | |
已知双曲线的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点. (1)求直线A1P与A2Q交点的轨迹E的方程; (2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值. |
21. 难度:中等 | |
设A(x1,y1),B(x2,y2)是平面直角坐标系xOy上的两点,现定义由点A到点B的一种折线距离ρ(A,B)为ρ(A,B)=|x2-x1|+|y2-y1| 对于平面xOy上给定的不同的两点A(x1,y1),B(x2,y2), (1)若点C(x,y)是平面xOy上的点,试证明ρ(A,C)+ρ(C,B)≥ρ(A,B); (2)在平面xOy上是否存在点C(x,y),同时满足 ①ρ(A,C)+ρ(C,B)=ρ(A,B)②ρ(A,C)=ρ(C,B)若存在,请求出所有符合条件的点,请予以证明. |