1. 难度:中等 | |
已知α、β是两个不同的平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点,命题q:α∥β,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
2. 难度:中等 | |
如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( ) A.直线AC B.直线AB C.直线CD D.直线BC |
3. 难度:中等 | |
正方体AC1中,E、F分别是线段C1D、BC的中点,则直线A1B与直线EF的位置关系是( ) A.相交 B.异面 C.平行 D.垂直 |
4. 难度:中等 | |
设A、B、C、D是空间四个不同的点,在下列命题中,不正确的是( ) A.若AC与BD共面,则AD与BC共面 B.若AC与BD是异面直线,则AD与BC是异面直线 C.若AB=AC,DB=DC,则AD=BC D.若AB=AC,DB=DC,则AD⊥BC |
5. 难度:中等 | |
以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线; ②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面; ③若直线a、b共面,直线a、c共面,则直线b、c共面; ④依次首尾相接的四条线段必共面. A.0 B.1 C.2 D.3 |
6. 难度:中等 | |
正四面体PABC中,M为棱AB的中点,则PA与CM所成角的余弦值为( ) A. B. C. D. |
7. 难度:中等 | |
平面α、β相交,α、β内各取两点,这四点都不在交线上,这四点能确定 个平面. |
8. 难度:中等 | |
在空间中, ①若四点不共面,则这四点中任何三点都不共线; ②若两条直线没有公共点,则这两条直线是异面直线. 以上两个命题中,逆命题为真命题的是 (把符合要求的命题序号都填上). |
9. 难度:中等 | |
在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有 .(填上所有正确答案的序号) |
10. 难度:中等 | |
已知空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是BC、CD上的点,且. 求证:(1)E、F、G、H四点共面;(2)三条直线EF、GH、AC交于一点. |
11. 难度:中等 | |
在长方体ABCD-A1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1上). (1)过P点在空间作一直线l,使l∥直线BD,应该如何作图?并说明理由; (2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α∈(0,],这样的直线有几条,应该如何作图? |
12. 难度:中等 | |
如图所示,已知正方体ABCD-A1B1C1D1的棱长为a,E,F分别是BC,A1D1的中点. (1)求证:四边形B1EDF为菱形; (2)求A1C与DE所成的角的余弦值. |