1. 难度:中等 | |
设集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},则M∩N=( ) A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} |
2. 难度:中等 | |
设a,b∈R且b≠0,若复数(a+bi)3是实数,则( ) A.b2=3a2 B.a2=3b2 C.b2=9a2 D.a2=9b2 |
3. 难度:中等 | |
函数的图象关于( ) A.y轴对称 B.直线y=-x对称 C.坐标原点对称 D.直线y=x对称 |
4. 难度:中等 | |
若x∈(e-1,1),a=lnx,b=2lnx,c=ln3x,则( ) A.a<b<c B.c<a<b C.b<a<c D.b<c<a |
5. 难度:中等 | |
设变量x,y满足约束条件:,则z=x-3y的最小值( ) A.-2 B.-4 C.-6 D.-8 |
6. 难度:中等 | |
从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A. B. C. D. |
7. 难度:中等 | |
的展开式中x的系数是( ) A.-4 B.-3 C.3 D.4 |
8. 难度:中等 | |
若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为( ) A.1 B. C. D.2 |
9. 难度:中等 | |
设a>1,则双曲线的离心率e的取值范围是( ) A. B. C.(2,5) D. |
10. 难度:中等 | |
已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为( ) A. B. C. D. |
11. 难度:中等 | |
等腰三角形两腰所在直线的方程分别为x+y-2=0与x-7y-4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A.3 B.2 C. D. |
12. 难度:中等 | |
已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A.1 B. C. D.2 |
13. 难度:中等 | |
设向量,若向量与向量共线,则λ= . |
14. 难度:中等 | |
设曲线y=eax在点(0,1)处的切线与直线x+2y+1=0垂直,则a= . |
15. 难度:中等 | |
已知F是抛物线C:y2=4x的焦点,过F且斜率为1的直线交C于A,B两点.设|FA|>|FB|,则|FA|与|FB|的比值等于 . |
16. 难度:中等 | |
平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件② . (写出你认为正确的两个充要条件) |
17. 难度:中等 | |
在△ABC中,,. (Ⅰ)求sinA的值; (Ⅱ)设△ABC的面积,求BC的长. |
18. 难度:中等 | |
购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104. (Ⅰ)求一投保人在一年度内出险的概率p; (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). |
19. 难度:中等 | |
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC. (Ⅰ)证明:A1C⊥平面BED; (Ⅱ)求二面角A1-DE-B的大小. |
20. 难度:中等 | |
设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由 (Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式; (Ⅱ)若an+1≥an,n∈N*,求a的取值范围. |
21. 难度:中等 | |
设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点. (Ⅰ)若,求k的值; (Ⅱ)求四边形AEBF面积的最大值. |
22. 难度:中等 | |
设函数. (Ⅰ)求f(x)的单调区间; (Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围. |