1. 难度:中等 | |
i是虚数单位,计算i+i2+i3=( ) A.-1 B.1 C.-i D.i |
2. 难度:中等 | |
下列四个图象所表示的函数,在点x=0处连续的是( ) A. B. C. D. |
3. 难度:中等 | |
2log510+log50.25=( ) A.0 B.1 C.2 D.4 |
4. 难度:中等 | |
函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是( ) A.m=-2 B.m=2 C.m=-1 D.m=1 |
5. 难度:中等 | |
设点M是线段BC的中点,点A在直线BC外,,,则=( ) A.8 B.4 C.2 D.1 |
6. 难度:中等 | |
将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A.y=sin(2x-) B.y=sin(2x-) C.y=sin(x-) D.y=sin(x-) |
7. 难度:中等 | |
某加工厂用某原料由车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天功能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为( ) A.甲车间加工原料10箱,乙车间加工原料60箱 B.甲车间加工原料15箱,乙车间加工原料55箱 C.甲车间加工原料18箱,乙车间加工原料50箱 D.甲车间加工原料40箱,乙车间加工原料30箱 |
8. 难度:中等 | |
已知数列{an}的首项a1≠0,其前n项的和为Sn,且Sn+1=2Sn+a1,则=( ) A.0 B. C.1 D.2 |
9. 难度:中等 | |
椭圆的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是( ) A.(0,] B.(0,] C.[,1) D.[,1) |
10. 难度:中等 | |
由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144 |
11. 难度:中等 | |
半径为R的球O的直径AB垂直于平面a,垂足为B,△BCD是平面a内边长为R的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是( ) A. B. C. D. |
12. 难度:中等 | |
设a>b>c>0,则的最小值是( ) A.2 B.4 C. D.5 |
13. 难度:中等 | |
的展开式中的第四项是 . |
14. 难度:中等 | |
直线x-2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|= . |
15. 难度:中等 | |
如图,二面角α-l-β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是 . |
16. 难度:中等 | |
设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题: ①集合S={a+bi|(a,b为整数,i为虚数单位)}为封闭集; ②若S为封闭集,则一定有0∈S; ③封闭集一定是无限集; ④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集. 其中真命题是 .(写出所有真命题的序号) |
17. 难度:中等 | |
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料. (Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望Eξ. |
18. 难度:中等 | |
已知正方体ABCD-A′B′C′D′的棱长为1,点M是棱AA′的中点,点O是对角线BD′的中点. (Ⅰ)求证:OM为异面直线AA′和BD′的公垂线; (Ⅱ)求二面角M-BC′-B′的大小; (Ⅲ)求三棱锥M-OBC的体积. |
19. 难度:中等 | |
(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ. (Ⅱ)已知△ABC的面积,且,求cosC. |
20. 难度:中等 | |
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N. (Ⅰ)求E的方程; (Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由. |
21. 难度:中等 | |
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2 (1)求a3,a5; (2)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列; (3)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn. |
22. 难度:中等 | |
设a>0且a≠1),g(x)是f(x)的反函数. (Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围; (Ⅱ)当a=e,e为自然对数的底数)时,证明:; (Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由. |