相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2011年高三数学单元检测:圆锥曲线(1)(解析版)
一、解答题
详细信息
1. 难度:中等
抛物线C:x2=2py(p>0)上一点P(m,4)到其焦点的距离为5.
(I)求p与m的值;
(II)若直线l:y=kx-1与抛物线C相交于A、B两点,l1、l2分别是该抛物线在A、B两点处的切线,M、N分别是l1、l2与该抛物线的准线交点,求证:manfen5.com 满分网
详细信息
2. 难度:中等
已知抛物线x2=6y的焦点为F,椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,P是它们的一个交点,且|PF|=2.
(I)求椭圆C的方程;
(II)若直线y=kx+m(k≠0,m>0)与椭圆C交于两点A、B,点D满足manfen5.com 满分网=0,直线FD的斜率为k1,试证明manfen5.com 满分网
详细信息
3. 难度:中等
如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,manfen5.com 满分网),且离心率等于manfen5.com 满分网,过点M(0,2)的直线l与椭圆相交于P,Q不同两点,点N在线段PQ上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设manfen5.com 满分网,试求λ的取值范围.

manfen5.com 满分网
详细信息
4. 难度:中等
在平面直角坐标系中,已知向量manfen5.com 满分网manfen5.com 满分网(m∈R),且满足manfen5.com 满分网,动点M(x,y)的轨迹为C.
(Ⅰ)求轨迹C的方程,并说明该方程所表示的轨迹的形状;
(Ⅱ)若已知圆O:x2+y2=1,当m=1时,过点M作圆O的切线,切点为A、B,求向量manfen5.com 满分网的最大值和最小值.
详细信息
5. 难度:中等
manfen5.com 满分网已知圆C1的方程为(x-4)2+(y-1)2=manfen5.com 满分网,椭圆C2的方程为manfen5.com 满分网,其离心率为manfen5.com 满分网,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径.
(Ⅰ)求直线AB的方程和椭圆C2的方程;
(Ⅱ)如果椭圆C2的左右焦点分别是F1、F2,椭圆上是否存在点P,使得manfen5.com 满分网,如果存在,请求点P的坐标,如果不存在,请说明理由.
详细信息
6. 难度:中等
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,右焦点F也是抛物线y2=4x的焦点.
(1)求椭圆方程;
(2)若直线l与C相交于A、B两点.
①若manfen5.com 满分网,求直线l的方程;
②若动点P满足manfen5.com 满分网,问动点P的轨迹能否与椭圆C存在公共点?若存在,求出点P的坐标;若不存在,说明理由.
详细信息
7. 难度:中等
设椭圆manfen5.com 满分网的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且manfen5.com 满分网
(Ⅰ)试求椭圆的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值.

manfen5.com 满分网
详细信息
8. 难度:中等
已知椭圆manfen5.com 满分网=1(a>b>0)的离心率e=manfen5.com 满分网,左、右焦点分别为F1、F2,点manfen5.com 满分网,点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
详细信息
9. 难度:中等
manfen5.com 满分网已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足manfen5.com 满分网
(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.
详细信息
10. 难度:中等
已知椭圆manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,且短轴长为2.
(1)求椭圆的方程;
(2)若与两坐标轴都不垂直的直线l与椭圆交于A,B两点,O为坐标原点,且manfen5.com 满分网manfen5.com 满分网,求直线l的方程.
详细信息
11. 难度:中等
设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且manfen5.com 满分网,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
详细信息
12. 难度:中等
已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,求manfen5.com 满分网的最大值.
详细信息
13. 难度:中等
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=manfen5.com 满分网的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

manfen5.com 满分网
详细信息
14. 难度:中等
设椭圆manfen5.com 满分网的离心率manfen5.com 满分网,右焦点到直线manfen5.com 满分网的距离manfen5.com 满分网,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
详细信息
15. 难度:中等
已知椭圆manfen5.com 满分网经过点manfen5.com 满分网,且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线manfen5.com 满分网交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
详细信息
16. 难度:中等
设四点A、B、C、D均在双曲线x2-y2=1的右支上.
(1)若manfen5.com 满分网=manfen5.com 满分网(实数λ≠0),证明:manfen5.com 满分网(O是坐标原点);
(2)若|AB|=2,P是线段AB的中点,过点P分别作该双曲线的两条渐近线的垂线,垂足为M、N,求四边形OMPN的面积的最大值.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.