1. 难度:中等 | |
方程ax2+by2=c表示双曲线是ab<0的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件 |
2. 难度:中等 | |
若的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
3. 难度:中等 | |
已知双曲线的左、右焦点分别是F1、F2,其一条渐近线方程为y=x,点在双曲线上、则•=( ) A.-12 B.-2 C.0 D.4 |
4. 难度:中等 | |
4.设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 |
5. 难度:中等 | |
双曲线-=1的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r=( ) A. B.2 C.3 D.6 |
6. 难度:中等 | |
设F1和F2为双曲线-=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为( ) A. B.2 C. D.3 |
7. 难度:中等 | |
设P是双曲线上一点,该双曲线的一条渐近线方程是3x+4y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=10,则|PF2|等于( ) A.2 B.18 C.2或18 D.16 |
8. 难度:中等 | |
已知双曲线的两个焦点为F1(-,0)、F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是( ) A.-=1 B.-=1 C.-y2=1 D.x2-=1 |
9. 难度:中等 | |
过双曲线的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于点B,C,且|AB|=|BC|,则双曲线M的离心率是( ) A. B. C. D. |
10. 难度:中等 | |
两个正数a,b的等差中项是5,等比中项是4.若a>b,则双曲线-=1的渐近线方程是 . |
11. 难度:中等 | |
已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为 . |
12. 难度:中等 | |
过双曲线C:-=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A、B.若∠AOB=120°(O是坐标原点),则双曲线C的离心率为 . |
13. 难度:中等 | |
设双曲线-=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB的面积为 . |
14. 难度:中等 | |
已知双曲线的渐近线方程为y=±x,并且焦点都在圆x2+y2=100上,求双曲线方程. |
15. 难度:中等 | |
已知双曲线的一条渐近线方程是x-2y=0,且过点P(4,3),求双曲线的标准方程. |
16. 难度:中等 | |
如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2=,且△PF1F2的面积为2,又双曲线的离心率为2,求该双曲线的方程. |
17. 难度:中等 | |
已知中心在原点的双曲线C的右焦点为(2,0),左顶点为. (1)求双曲线C的方程 (2)若直线y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点M、N,且线段MN的垂直平分线过点A(0,-1),求实数m的取值范围. |