1. 难度:中等 | |
第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}.集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( ) A.A⊆B B.B⊆C C.A∩B=C D.B∪C=A |
2. 难度:中等 | |
已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是( ) A.(1,5) B.(1,3) C. D. |
3. 难度:中等 | |
已知平面向量=(1,2),=(-2,m),且∥,则=( ) A.(-5,-10) B.(-4,-8) C.(-3,-6) D.(-2,-4) |
4. 难度:中等 | |
记等差数列的前n项和为Sn,若S2=4,S4=20,则该数列的公差d=( ) A.2 B.3 C.6 D.7 |
5. 难度:中等 | |
已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是( ) A.最小正周期为π的奇函数 B.最小正周期为的奇函数 C.最小正周期为π的偶函数 D.最小正周期为的偶函数 |
6. 难度:中等 | |
经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是( ) A.x+y+1=0 B.x+y-1=0 C.x-y+1=0 D.x-y-1=0 |
7. 难度:中等 | |
将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( ) A. B. C. D. |
8. 难度:中等 | |
命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0”的逆否命题是( ) A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数 B.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数 C.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数 D.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数 |
9. 难度:中等 | |
设a∈R,若函数y=ex+ax,x∈R,有大于零的极值点,则( ) A.a<-1 B.a>-1 C. D. |
10. 难度:中等 | |
设a,b∈R,若a-|b|>0,则下列不等式中正确的是( ) A.b-a>0 B.a3+b3<0 C.a2-b2<0 D.b+a>0 |
11. 难度:中等 | |
为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是 . |
12. 难度:中等 | |
若变量x,y满足,则z=3x+2y的最大值是 . |
13. 难度:中等 | |
阅读程序框图,若输入m=4,n=3,则输出a= ,i= . (注:框图中的赋值符号“=”,也可以写成“←”或“:=”) |
14. 难度:中等 | |
已知曲线C1,C2的极坐标方程分别为ρcosθ=3,,则曲线C1与C2交点的极坐标为 . |
15. 难度:中等 | |
已知PA是圆O的切线,切点为A,PA=2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R= . |
16. 难度:中等 | |
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点. (1)求f(x)的解析式; (2)已知,且,,求f(α-β)的值. |
17. 难度:中等 | |
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=) |
18. 难度:中等 | |
如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD. (1)求线段PD的长; (2)若,求三棱锥P-ABC的体积. |
19. 难度:中等 | |||||||||||||
某中学共有学生2000人,各年级男,女生人数如下表:
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名? (2)已知y≥245,z≥245,求高三年级中女生比男生多的概率. |
20. 难度:中等 | |
设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1. (1)求满足条件的椭圆方程和抛物线方程; (2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). |
21. 难度:中等 | |
设数列{an}满足a1=1,a2=2,an=(an-1+2an-2)(n=3,4,…).数列{bn}满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤bm+bm+1+…+bm+k≤1. (1)求数列{an}和{bn}的通项公式; (2)记cn=nanbn(n=1,2,…),求数列{cn}的前n项和Sn. |