1. 难度:中等 | |
(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为 . |
2. 难度:中等 | |
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-. (Ⅰ)求动点P的轨迹方程; (Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由. |
3. 难度:中等 | |
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1. (Ⅰ)求曲线C的方程 (Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由. |
4. 难度:中等 | |
为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图).在直线x=2的右侧,考察范围为到点B的距离不超过km的区域;在直线x=2的左侧,考察范围为到A,B两点的距离之和不超过4km的区域. (Ⅰ)求考察区域边界曲线的方程; (Ⅱ)如图所示,设线段P1P2,P2P3是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间. |
5. 难度:中等 | |
为了考察冰川的融化状况,一支科考队在某冰川山上相距8Km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(如图).考察范围到A、B两点的距离之和不超过10Km的区域. (1)求考察区域边界曲线的方程: (2)如图所示,设线段P1P2(3)是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍.问:经过多长时间,点A恰好在冰川边界线上? |
6. 难度:中等 | |
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N. (Ⅰ)求E的方程; (Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由. |
7. 难度:中等 | |
(上海春卷22)在平面上,给定非零向量,对任意向量,定义. (1)若,求; (2)若,证明:若位置向量的终点在直线Ax+By+C=0上,则位置向量的终点也在一条直线上. |