1. 难度:中等 | |
集合P={x|x2-16<0},Q={x|x=2n,n∈Z},则P∩Q=( ) A.{-2,2} B.{-2,2,-4,4} C.{-2,0,2} D.{-2,2,0,-4,4} |
2. 难度:中等 | |
已知非零向量、,若+2与-2互相垂直,则=( ) A. B.4 C. D.2 |
3. 难度:中等 | |
已知,A∈(0,π),则sinA+cosA=( ) A. B. C. D. |
4. 难度:中等 | |
在等比数列{an}中,a1=1,a10=3,则a2a3a4a5a6a7a8a9=( ) A.81 B.27 C. D.243 |
5. 难度:中等 | |
甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( ) A.甲是乙的充分但不必要条件 B.甲是乙的必要但不充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件,也不是乙的必要条件 |
6. 难度:中等 | |
关于直线m,n与平面α,β,有以下四个命题: ①若m∥α,n∥β且α∥β,则m∥n; ②若m⊥α,n⊥β且α⊥β,则m⊥n; ③若m⊥α,n∥β且α∥β,则m⊥n; ④若m∥α,n⊥β且α⊥β,则m∥n; 其中真命题的序号是( ) A.①② B.③④ C.①④ D.②③ |
7. 难度:中等 | |
设,则的定义域为( ) A.(-4,0)∪(0,4) B.(-4,-1)∪(1,4) C.(-2,-1)∪(1,2) D.(-4,-2)∪(2,4) |
8. 难度:中等 | |
在的展开式中,x的幂的指数是整数的有( ) A.3项 B.4项 C.5项 D.6项 |
9. 难度:中等 | |
设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若且,则点P的轨迹方程是( ) A. B. C. D. |
10. 难度:中等 | |
关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根; 其中假命题的个数是( ) A.0 B.1 C.2 D.3 |
11. 难度:中等 | |
在△ABC中,已知a=,b=4,A=30°,则sinB= . |
12. 难度:中等 | |
接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01) |
13. 难度:中等 | |
若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k的取值范围是 . |
14. 难度:中等 | |
安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答) |
15. 难度:中等 | |
半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr①. ①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于①的式子②: ,②式可以用语言叙述为: . |
16. 难度:中等 | |
设向量=(sinx,cosx),=(cosx,cosx),x∈R,函数f(x)=•(+). (Ⅰ)求函数f(x)的最大值与最小正周期; (Ⅱ)求使不等式f(x)≥成立的x的取值集. |
17. 难度:中等 | |
某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定 (Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例; (Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数. |
18. 难度:中等 | |
如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N. (Ⅰ)求二面角B1-AM-N的平面角的余弦值; (Ⅱ)求点B1到平面AMN的距离. |
19. 难度:中等 | |
设函数f(x)=x3+ax2+bx+c在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调区间. |
20. 难度:中等 | |
已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,Tn是数列{bn}的前n项和,求使得对所有n∈N*都成立的最小正整数m; |
21. 难度:中等 | |
设A,B分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线. (Ⅰ)求椭圆的方程; (Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内. (此题不要求在答题卡上画图) |