1. 难度:中等 | |
设P、Q为两个非空实数集,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是( ) A.6 B.7 C.8 D.9 |
2. 难度:中等 | |
对任意实数a,b,c,给出下列命题: ①“a=b”是“ac=bc”的充要条件; ②“a+5是无理数”是“a是无理数”的充要条件; ③“a>b”是“a2>b2”的充分条件; ④“a<5”是“a<3”的必要条件. 其中真命题的个数是( ) A.1 B.2 C.3 D.4 |
3. 难度:中等 | |
=( ) A.-2-i B.-2+i C.2-i D.2+i |
4. 难度:中等 | |
函数y=e|lnx|-|x-1|的图象大致是( ) A. B. C. D. |
5. 难度:中等 | |
双曲线-=1(mn≠0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为( ) A. B. C. D. |
6. 难度:中等 | |
在y=2x,y=log2x,y=x2这三个函数中,当0<x1<x2<1时,使恒成立的函数的个数是( ) A.0个 B.1个 C.2个 D.3个 |
7. 难度:中等 | |
若sinα+cosα=tanα(0<α<),则α所在的区间( ) A.(0,) B.(,) C.(,) D.(,) |
8. 难度:中等 | |
若(-)=1,则常数a,b的值为( ) A.a=-2,b=4 B.a=2,b=-4 C.a=-2,b=-4 D.a=2,b=4 |
9. 难度:中等 | |
若,则2x与3sinx的大小关系( ) A.2x>3sin B.2x<3sin C.2x=3sin D.与x的取值有关 |
10. 难度:中等 | |
如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为( ) A.K B.H C.G D.B′ |
11. 难度:中等 | |
某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样 |
12. 难度:中等 | |
以正方体的任意三个顶点为顶点作三角形,从中随机地取出两个三角形,则这两个三角形不共面的概率为( ) A. B. C. D. |
13. 难度:中等 | |
已知向量不超过5,则k的取值范围是 . |
14. 难度:中等 | |
的展开式中整理后的常数项等于 . |
15. 难度:中等 | |
设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为 . |
16. 难度:中等 | |
为了了解噪声污染的情况,某市环保局抽样调查了80个测量点的噪声声级(单位:分贝),并进行整理后分成五组,绘制出频率分布直方图,如图所示.已知从左至右前四组的频率分别是0.15,0.25,0.3,0.2,且噪声声级高于69.5分贝就会影响工作和生活,那么影响到工作和生活而需对附近区域进行治理的测量点有 个. |
17. 难度:中等 | |
已知向量=(x2,x+1),=(1-x,t),若函数f(x)=•在区间(-1,1)上是增函数,求t的取值范围. |
18. 难度:中等 | |
在△ABC中,已知AB=,cosB=,AC边上的中线BD=,求sinA的值. |
19. 难度:中等 | |
某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率. |
20. 难度:中等 | |
如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点. (Ⅰ)求直线AC与PB所成角的余弦值; (Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离. |
21. 难度:中等 | |
设A、B是椭圆3x2+y2=λ上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点. (Ⅰ)确定λ的取值范围,并求直线AB的方程; (Ⅱ)试判断是否存在这样的λ,使得A、B、C、D四点在同一个圆上?并说明理由. |
22. 难度:中等 | |
已知不等式++…+>,其中n为大于2的整数,[log2n]表示不超过log2n的最大整数.设数列{an}的各项为正,且满足a1=b(b>0),an≤,n=2,3,4,….证明:an<,n=3,4,5,…. |