1. 难度:中等 | |
i是虚数单位,=( ) A. B. C. D. |
2. 难度:中等 | |
如果双曲线的两个焦点分别为F1(-3,0)、F2(3,0),一条渐近线方程为,那么它的两条准线间的距离是( ) A. B.4 C.2 D.1 |
3. 难度:中等 | |
设变量x、y满足约束条件,则目标函数z=2x+y的最小值为( ) A.2 B.3 C.4 D.9 |
4. 难度:中等 | |
设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
5. 难度:中等 | |
将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A.10种 B.20种 C.36种 D.52种 |
6. 难度:中等 | |
设m、n是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( ) A.m⊥α,n⊂β,m⊥n⇒α⊥β B.α∥β,m⊥α,n∥β⇒m⊥n C.α⊥β,m⊥α,n∥β⇒m⊥n D.α⊥β,α∩β=m,n⊥m⇒n⊥β |
7. 难度:中等 | |
已知数列{an}.{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1+b1=5,a1,b1∈N*、设(n∈N*),则数列{cn}的前10项和等于( ) A.55 B.70 C.85 D.100 |
8. 难度:中等 | |
已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在处取得最小值,则函数是( ) A.偶函数且它的图象关于点(π,0)对称 B.偶函数且它的图象关于点对称 C.奇函数且它的图象关于点对称 D.奇函数且它的图象关于点(π,0)对称 |
9. 难度:中等 | |
函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点的个数为( ) A.1 B.2 C.3 D.4 |
10. 难度:中等 | |
已知函数y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f(x)[f(x)+f(2)-1].若y=g(x)在区间上是增函数,则实数a的取值范围是( ) A.[2,+∞) B.(0,1)∪(1,2) C. D. |
11. 难度:中等 | |
的二项展开式中x的系数是 (用数学作答). |
12. 难度:中等 | |
设向量与的夹角为θ,且,,则cosθ= . |
13. 难度:中等 | |
如图,在正三棱柱ABC-A1B1C1中,AB=1.若二面角C-AB-C1的大小为60°,则点C到平面ABC1的距离为 . |
14. 难度:中等 | |
设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为,则a= . |
15. 难度:中等 | |
某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x= 吨. |
16. 难度:中等 | |
设函数,点A表示坐标原点,点An(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设Sn=tanθ1+tanθ2+…+tanθn,则= . |
17. 难度:中等 | |
如图,在△ABC中,AC=2,BC=1,. (1)求AB的值; (2)求sin(2A+C)的值. |
18. 难度:中等 | |
某射手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响. (1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); |
19. 难度:中等 | |
如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱. (I)证明FO∥平面CDE; (II)设,证明EO⊥平面CDF. |
20. 难度:中等 | |
已知函数,其中x∈R,θ为参数,且0≤θ≤. (Ⅰ)当cosθ=0时,判断函数f(x)是否有极值; (Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围; (Ⅲ)若对(II)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围. |
21. 难度:中等 | |
已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且(λ为非零参数,n=2,3,4,…). (1)若x1,x3,x5成等比数列,求参数λ的值; (2)当λ>0时,证明;当λ>1时,证明. |
22. 难度:中等 | |
如图,以椭圆的中心O为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连接OA交小圆于点B.设直线BF是小圆的切线. (1)求证c2=ab,并求直线BF与y轴的交点M的坐标; (2)设直线BF交椭圆于P、Q两点,求证•=b2. |