1. 难度:中等 | |
设集合 M={x|(x+3)(x-2)<0},N={x|1≤x≤3},则M∩N=( ) A.[1,2) B.[1,2] C.(2,3] D.[2,3] |
2. 难度:中等 | |
复数z=(i是虚数单位)在复平面内对应的点位于象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
3. 难度:中等 | |
若点(a,9)在函数y=3x的图象上,则tan的值为( ) A.0 B. C.1 D. |
4. 难度:中等 | |
曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是( ) A.-9 B.-3 C.9 D.15 |
5. 难度:中等 | |
已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3 B.若a+b+c=3,则a2+b2+c2<3 C.若a+b+c≠3,则a2+b2+c2≥3 D.若a2+b2+c2≥3,则a+b+c=3 |
6. 难度:中等 | |
若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=( ) A. B. C.2 D.3 |
7. 难度:中等 | |
设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为( ) A.11 B.10 C.9 D.8.5 |
8. 难度:中等 | |||||||||||
某产品的广告费用x与销售额y的统计数据如下表
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元 |
9. 难度:中等 | |
设M(x,y)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y的取值范围是( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞) |
10. 难度:中等 | |
函数的图象大致是( ) A. B. C. D. |
11. 难度:中等 | |
如图是长和宽分别相等的两个矩形.给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如下图; ②存在四棱柱,其正(主)视图、俯视图如下图; ③存在圆柱,其正(主)视图、俯视图如下图. 其中真命题的个数是 ( ) A.3 B.2 C.1 D.0 |
12. 难度:中等 | |
设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( ) A.C可能是线段AB的中点 B.D可能是线段AB的中点 C.C,D可能同时在线段AB上 D.C,D不可能同时在线段AB的延长线上 |
13. 难度:中等 | |
某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . |
14. 难度:中等 | |
执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是 . |
15. 难度:中等 | |
已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 . |
16. 难度:中等 | |
已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n= . |
17. 难度:中等 | |
在△ABC中,内角A,B,C的对边分别为a,b,c.已知. (1)求的值; (2)若cosB=,△ABC的周长为5,求b的长. |
18. 难度:中等 | |
甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女. (I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率. |
19. 难度:中等 | |
如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°. (Ⅰ)证明:AA1⊥BD; (Ⅱ)证明:CC1∥平面A1BD. |
20. 难度:中等 | |||||||||||||||||
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
(Ⅱ)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n. |
21. 难度:中等 | |
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元. (Ⅰ)写出y关于r的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r. |
22. 难度:中等 | |
在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m). (Ⅰ)求m2+k2的最小值; (Ⅱ)若|OG|2=|OD|∙|OE|, (i)求证:直线l过定点; (ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由. |