1. 难度:中等 | |
i是虚数单位,复数=( ) A.2-i B.2+i C.-1-2i D.-1+2i |
2. 难度:中等 | |
设变量x,y满足约束条件则目标函数z=3x-y的最大值为( ) A.-4 B.0 C. D.4 |
3. 难度:中等 | |
阅读如图的程序框图,运行相应的程序,若输入x的值为-4,则输出y的值为( ) A.0.5 B.1 C.2 D.4 |
4. 难度:中等 | |
设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.即不充分也不必要条件 |
5. 难度:中等 | |
已知a=log23.6,b=log43.2,c=log43.6则( ) A.a>b>c B.a>c>b C.b>a>c D.c>a>b |
6. 难度:中等 | |
已知双曲线-=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ) A.2 B.2 C.4 D.4 |
7. 难度:中等 | |
已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则( ) A.f(x)在区间[-2π,0]上是增函数 B.f(x)在区间[-3π,-π]上是增函数 C.f(x)在区间[3π,5π]上是减函数 D.f(x)在区间[4π,6π]上是减函数 |
8. 难度:中等 | |
对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2-2)⊗(x-1),x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是( ) A.(-1,1]∪(2,+∞) B.(-2,-1]∪(1,2] C.(-∞,-2)∪(1,2] D.[-2,-1] |
9. 难度:中等 | |
已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于 . |
10. 难度:中等 | |
一个几何体的三视图如图所示(单位:m),则这个几何体的体积为 m3. |
11. 难度:中等 | |
已知{an}为等差数列,Sn为{an}的前n项和,n∈N*,若a3=16,S20=20,则S10值为 . |
12. 难度:中等 | |
已知log2a+log2b≥1,则3a+9b的最小值为 . |
13. 难度:中等 | |
如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且 DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为. |
14. 难度:中等 | |
已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为 . |
15. 难度:中等 | |||||||||||||||||||||||||||||||||||||||||||||
编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
(i)用运动员的编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50分的概率. |
16. 难度:中等 | |
在△ABC中,内角A,B,C的对边分别为a,b,c,已知. (Ⅰ)求cosA的值; (Ⅱ)的值. |
17. 难度:中等 | |
如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点. (Ⅰ)证明:PB∥平面ACM; (Ⅱ)证明:AD⊥平面PAC; (Ⅲ)求直线AM与平面ABCD所成角的正切值. |
18. 难度:中等 | |
设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|. (Ⅰ)求椭圆的离心率e; (Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程. |
19. 难度:中等 | |
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R. (Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程; (Ⅱ)当t≠0时,求f(x)的单调区间; (Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点. |
20. 难度:中等 | |
已知数列{an}与{bn}满足bn+1an+bnan+1=(-2)n+1,bn=,n∈N*,且a1=2. (Ⅰ)求a2,a3的值 (Ⅱ)设cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列 (Ⅲ)设Sn为{an}的前n项和,证明++…++≤n-(n∈N*) |