1. 难度:中等 | |
不等式(x+1)≥0的解集是( ) A.{x|x>1} B.{x|x≥1} C.{x|x≥1或x=-1} D.{x|x≥-1或x=1} |
2. 难度:中等 | |
下列命题中的真命题是( ) A.若a>b,c>d,则ac>bd B.若|a|>b,则a2>b2 C.若a>b,则a2>b2 D.若a>|b|,则a2>b2 |
3. 难度:中等 | |
已知函数f(x)=,若f(x)≥1,则x的取值范围是( ) A.(-∞,-1] B.[1,+∞) C.(-∞,0]∪[1,+∞) D.(-∞,-1]∪[1,+∞) |
4. 难度:中等 | |
若集合A={x||2x-1|<3},B={x|<0},则A∩B是( ) A.{x|-1<x<-或2<x<3} B.{x|2<x<3} C.{x|-<x<2} D.{x|-1<x<-} |
5. 难度:中等 | |
下列类比推理命题(其中Q为有理数集,R为实数集,C为复数集): ①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”; ②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则”; ③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”. 其中类比结论正确的个数是( ) A.0 B.1 C.2 D.3 |
6. 难度:中等 | |
已知实数a,b,则“ab≥2”是“a2+b2≥4”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
7. 难度:中等 | |
三段论:“①只有船准时起航,才能准时到达目的港;②某艘船是准时到达目的港的;③所以这艘船是准时起航的”中小前提是( ) A.① B.② C.①② D.③ |
8. 难度:中等 | |
不等式组,所表示的平面区域的面积等于( ) A. B. C. D. |
9. 难度:中等 | |
已知函数f(x)=ax2+bx+c的图象过点(-1,3)和(1,1),若0<c<1,则实数a的取值范围是( ) A.[2,3] B.[1,3] C.(1,2) D.(1,3) |
10. 难度:中等 | |
若f(a)=(3m-1)a+b-2m,当m∈[0,1]时f(a)≤1恒成立,则a+b的最大值为( ) A. B. C. D. |
11. 难度:中等 | |
已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则+++等于( ) A.36 B.24 C.18 D.12 |
12. 难度:中等 | |
某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与仓库到车站的距离成正比,如果在距离车站10 km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站( ) A.5km处 B.4km处 C.3km处 D.2km处 |
13. 难度:中等 | |
关于x的不等式x2+(a+1)x+ab>0的解集是{x|x<-1或x>4},则实数a、b的值分别为 . |
14. 难度:中等 | |
关于x的不等式ax2+4x-1≥-2x2-a恒成立,那么实数a的取值范围是 . |
15. 难度:中等 | |
某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为 元. |
16. 难度:中等 | |
已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则下列说法正确的是 . ①2a-3b+1>0; ②a≠0时,有最小值,无最大值; ③∃M∈R+,使>M恒成立; ④当a>0且a≠1,b>0时,则的取值范围为(-∞,-)∪(,+∞). |
17. 难度:中等 | |
已知f(x)=-3x2+a(6-a)x+b. (1)解关于a的不等式f(1)>0; (2)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值. |
18. 难度:中等 | |
若a1>0,a1≠1,an+1=(n=1,2,…) (1)求证:an+1≠an; (2)令a1=,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an. |
19. 难度:中等 | |
沪杭高速公路全长166千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶到杭州.已知该汽车每小时的运输成本y(以元为单元)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为200元. (1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域; (2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元? |
20. 难度:中等 | |
已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=. (1)若f(-2)=0,求F(x)的表达式; (2)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0? |
21. 难度:中等 | |
某工艺品加工厂准备生产具有收藏价值的奥运会标志--“中国印•舞动的北京”和奥运会吉祥物--“福娃”.该厂所用的主要原料为A、B两种贵金属,已知生产一套奥运会标志需用原料A和原料B的量分别为4盒和3盒,生产一套奥运会吉祥物需用原料A和原料B的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该厂月初一次性购进原料A、B的量分别为200盒和300盒.问该厂生产奥运会标志和奥运会吉祥物各多少套才能使该厂月利润最大?最大利润为多少? |
22. 难度:中等 | |
[理]已知函数f(x)=ax--2lnx,f(1)=0. (1)若函数f(x)在其定义域内为单调函数,求a的取值范围; (2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′()-n2+1,已知a1=4,求证:an≥2n+2. |
23. 难度:中等 | |
[文]已知不等式x2+px+1>2x+p. (1)如果不等式当|p|≤2时恒成立,求x的范围; (2)如果不等式当2≤x≤4时恒成立,求p的范围. |