1. 难度:中等 | |
复数等于( ) A.4i B.-4i C.2i D.-2i |
2. 难度:中等 | |
不等式≤0的解集是( ) A.(-∞,-1)∪(-1,2) B.[-1,2] C.(-∞,-1)∪[2,+∞) D.(-1,2] |
3. 难度:中等 | |
设M,N是两个集合,则“M∪N≠∅”是“M∩N≠∅”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 |
4. 难度:中等 | |
设,都是非零向量,若函数f(x)=(x+)•(-x)(x∈R)是偶函数,则必有( ) A.⊥ B.∥ C.||=|| D.||≠|| |
5. 难度:中等 | |
设随机变量ξ服从标准正态分布N(0,1).已知Φ(-1.96)=0.025,则P(|ξ|<1.96)=( ) A.0.025 B.0.050 C.0.950 D.0.975 |
6. 难度:中等 | |
函数的图象和函数g(x)=log2x的图象的交点个数是( ) A.4 B.3 C.2 D.1 |
7. 难度:中等 | |
下列四个命题中,不正确的是( ) A.若函数f(x)在x=x处连续,则 B.函数的不连续点是x=2和x=-2 C.若函数f(x)、g(x)满足,则 D. |
8. 难度:中等 | |
棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱AA1,DD1的中点,则直线EF被球O截得的线段长为( ) A. B.1 C. D. |
9. 难度:中等 | |
设F1,F2分别是椭圆(a>b>0)的左、右焦点,若在其右准线上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( ) A. B. C. D. |
10. 难度:中等 | |
设集合M={1,2,3,4,5,6},S1、S2、…、Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj}(i≠j,i、j∈{1,2,3,…,k}),都有min≠min(min{x,y}表示两个数x、y中的较小者).则k的最大值是( ) A.10 B.11 C.12 D.13 |
11. 难度:中等 | |
圆心为(1,1)且与直线x+y=4相切的圆的方程是 . |
12. 难度:中等 | |
在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=,,则B= . |
13. 难度:中等 | |
函数f(x)=12x-x3在区间[-3,3]上的最小值是 . |
14. 难度:中等 | |
设集合,B={(x,y)|y≤-|x|+b},A∩B≠∅. (1)b的取值范围是 ; (2)若(x,y)∈A∩B,且x+2y的最大值为9,则b的值是 . |
15. 难度:中等 | |
将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表、从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第 行;第61行中1的个数是 . 第1行1 1 第2行1 0 1 第3行1 1 1 1 第4行1 0 0 0 1 第5行1 1 0 0 1 1 … |
16. 难度:中等 | |
已知函数,. (I)设x=x是函数y=f(x)图象的一条对称轴,求g(x)的值; (II)求函数h(x)=f(x)+g(x)的单调递增区间. |
17. 难度:中等 | |
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (I)任选1名下岗人员,求该人参加过培训的概率; (II)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望. |
18. 难度:中等 | |
如图1,E,F分别是矩形ABCD的边AB,CD的中点,G是EF上的一点,将△GAB,△GCD分别沿AB,CD翻折成△G1AB,△G2CD,并连接G1G2,使得平面G1AB⊥平面ABCD,G1G2∥AD,且G1G2<AD、连接BG2,如图2. (I)证明:平面G1AB⊥平面G1ADG2; (II)当AB=12,BC=25,EG=8时,求直线BG2和平面G1ADG2所成的角. |
19. 难度:中等 | |
如图,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用、从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km、当山坡上公路长度为lkm(1≤l≤2)时,其造价为(l2+1)a万元、已知OA⊥AB,PB⊥AB,AB=1.5(km),. (I)在AB上求一点D,使沿折线PDAO修建公路的总造价最小; (II)对于(I)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小. (III)在AB上是否存在两个不同的点D',E',使沿折线PD'E'O修建公路的总造价小于(II)中得到的最小总造价,证明你的结论、 |
20. 难度:中等 | |
已知双曲线x2-y2=2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点. (I)若动点M满足(其中O为坐标原点),求点M的轨迹方程; (II)在x轴上是否存在定点C,使•为常数?若存在,求出点C的坐标;若不存在,请说明理由. |
21. 难度:中等 | |
已知An(an,bn)(n∈N*)是曲线y=ex上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn2=3n2an+Sn-12,an≠0,n=2,3,4,…. (I)证明:数列(n≤2)是常数数列; (II)确定a的取值集合M,使a∈M时,数列{an}是单调递增数列; (III)证明:当a∈M时,弦AnAn+1(n∈N*)的斜率随n单调递增. |