1. 难度:中等 | |
设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N=( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.M={4,5,6,8} |
2. 难度:中等 | |
函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是( ) A. B. C. D. |
3. 难度:中等 | |
某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是( ) A.150.2克 B.149.8克 C.149.4克 D.147.8克 |
4. 难度:中等 | |
如图,ABCD-A1B1C1D1为正方体,下面结论错误的是( ) A.BD∥平面CB1D1 B.AC1⊥BD C.AC1⊥平面CB1D1 D.异面直线AD与CB1所成的角为60° |
5. 难度:中等 | |
如果双曲线上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是( ) A. B. C. D. |
6. 难度:中等 | |
设球O的半径是1,A、B、C是球面上三点,已知A到B、C两点的球面距离都是,且二面角B-OA-C的大小是,则从A点沿球面经B、C两点再回到A点的最短距离是( ) A. B. C. D. |
7. 难度:中等 | |
等差数列{an}中,a1=1,a3+a5=14,其前n项和Sn=100,则n=( ) A.9 B.10 C.11 D.12 |
8. 难度:中等 | |
设A(a,1),B(2,b),C(4,5)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则a与b满足的关系式为( ) A.4a-5b=3 B.5a-4b=3 C.4a+5b=14 D.5a+4b=14 |
9. 难度:中等 | |
用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( ) A.288个 B.240个 C.144个 D.126个 |
10. 难度:中等 | |
已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于( ) A.3 B.4 C. D. |
11. 难度:中等 | |
某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( ) A.36万元 B.31.2万元 C.30.4万元 D.24万元 |
12. 难度:中等 | |
如图,l1、l2、l3是同一平面内的三条平行直线,l1与l2间的距离是1,l2与l3间的距离是2,正三角形ABC的三顶点分别在l1、l2、l3上,则△ABC的边长是( ) A. B. C. D. |
13. 难度:中等 | |
的展开式中的第5项为常数项,那么正整数n的值是 . |
14. 难度:中等 | |
在正三棱柱ABC-A1B1C1中,侧棱长为,底面三角形的边长为1,则BC1与侧面ACC1A1所成的角是 . |
15. 难度:中等 | |
已知⊙O的方程是x2+y2-2=0,⊙O'的方程是x2+y2-8x+10=0,由动点P向⊙O和⊙O'所引的切线长相等,则动点P的轨迹方程是 . |
16. 难度:中等 | |
下面有5个命题: ①函数y=sin4x-cos4x的最小正周期是π; ②终边在y轴上的角的集合是; ③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有3个公共点; ④把函数的图象向右平移得到y=3sin2x的图象; ⑤角θ为第一象限角的充要条件是sinθ>0 其中,真命题的编号是 (写出所有真命题的编号) |
17. 难度:中等 | |
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望Eξ,并求该商家拒收这批产品的概率. |
18. 难度:中等 | |
已知cosα=,cos(α-β)=,且0<β<α<, (Ⅰ)求tan2α的值; (Ⅱ)求β. |
19. 难度:中等 | |
如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90°. (Ⅰ)求证:AC⊥BM; (Ⅱ)求二面角M-AB-C的大小; (Ⅲ)求多面体PMABC的体积. |
20. 难度:中等 | |
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12. (Ⅰ)求a,b,c的值; (Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值. |
21. 难度:中等 | |
设F1、F2分别是椭圆的左、右焦点. (Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标; (Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围. |
22. 难度:中等 | |
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数. (Ⅰ)用xn表示xn+1; (Ⅱ)若x1=4,记,证明数列{an}成等比数列,并求数列{xn}的通项公式; (Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3. |