1. 难度:中等 | |
设不等式组表示的平面区域为D,若指数函数y=ax的图象上存在区域D上的点,则a的取值范围是( ) A.(1,3] B.[2,3] C.(1,2] D.[3,+∞] |
2. 难度:中等 | |
设不等式组所表示的平面区域是Ω1,平面区域是Ω2与Ω1关于直线3x-4y-9=0对称,对于Ω1中的任意一点A与Ω2中的任意一点B,|AB|的最小值等于( ) A. B.4 C. D.2 |
3. 难度:中等 | |
设变量x,y满足约束条件,则目标函数z=3x-4y的最大值和最小值分别为( ) A.3,-11 B.-3,-11 C.11,-3 D.11,3 |
4. 难度:中等 | |
若实数x,y满足不等式组且x+y的最大值为9,则实数m=( ) A.-2 B.-1 C.1 D.2 |
5. 难度:中等 | |
若x,y满足约束条件目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是( ) A.(-1,2) B.(-4,2) C.(-4,0] D.(-2,4) |
6. 难度:中等 | |
设x,y满足则z=x+y( ) A.有最小值2,最大值3 B.有最小值2,无最大值 C.有最大值3,无最小值 D.既无最小值,也无最大值 |
7. 难度:中等 | |
设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为( ) A. B. C. D.4 |
8. 难度:中等 | |
设变量x,y满足约束条件:.则目标函数z=2x+3y的最小值为( ) A.6 B.7 C.8 D.23 |
9. 难度:中等 | |
若不等式组,所表示的平面区域被直线y=kx+4分成面积相等的两部分,则k的值为( ) A. B. C.- D.- |
10. 难度:中等 | |
设二元一次不等式组所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是( ) A.[1,3] B.[2,] C.[2,9] D.[,9] |
11. 难度:中等 | |
若变量x,y满足则z=3x+2y的最大值是( ) A.90 B.80 C.70 D.40 |
12. 难度:中等 | |
已知铁矿石A和B的含铁率为a,冶炼每万吨铁矿石的排放量为b,及每万吨铁矿石的价格c,如表: 某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量不超过2(万吨),则购买铁矿石的最少费用为 (百万元). |
13. 难度:中等 | |
设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为8,则a+b的最小值为 . |
14. 难度:中等 | |
已知-1<x+y<4且2<x-y<3,则z=2x-3y的取值范围是 .(答案用区间表示) |
15. 难度:中等 | |
若实数x、y满足不等式组则2x+3y的最小值是 . |
16. 难度:中等 | |
将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是 . |
17. 难度:中等 | |
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? |