1. 难度:中等 | |
将A、B、C、D、E排成一列,要求A、B、C在排列中顺序为“A、B、C”或“C、B、A”(可以不相邻),这样的排列数有多少种( ) A.12 B.20 C.40 D.60 |
2. 难度:中等 | |
四张卡片上分别标有数字“2”“0”“0”“9”,其中“9”可当“6”用,则由这四张卡片可组成不同的四位数的个数为( ) A.6 B.12 C.18 D.24 |
3. 难度:中等 | |
从1,3,5,7中任取2个数字,从2,4,6,8中任取2个数字组成没有重复数字的四位数,其中能被5整除的四位数的个数有( ) A.120个 B.300个 C.240个 D.108个 |
4. 难度:中等 | |
甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( ) A.6种 B.12种 C.24种 D.30种 |
5. 难度:中等 | |
已知有穷数列{an}(n=1,2,3,…,6)满足an∈{1,2,3,…,10},且当i≠j(i,j=1,2,3,…,6)时,ai≠aj.若a1>a2>a3,a4<a5<a6,则符合条件的数列{an}的个数是( ) A.C103C73 B.C103C103 C.C103C73 D.C106C63 |
6. 难度:中等 | |
用三种不同的颜色填涂右图3×3方格中的9个区域,要求每行、每列的三个区域都不同色,则不同的填涂方法种数共有( ) A.48 B.24 C.12 D.6 |
7. 难度:中等 | |
某电视台连续播放6个广告,其中有3个不同的商业广告,2个不同的奥运宣传广告,1个公益广告.要求最后播放的不能是商业广告,且奥运宣传广告与公益广告不能连续播放,2个奥运宣传广告也不能连续播放,则不同的播放方法有 种. |
8. 难度:中等 | |
7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 种(用数字作答). |
9. 难度:中等 | |
某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 . |
10. 难度:中等 | |
用数字0、1、2、3、4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有 个(用数字作答). |
11. 难度:中等 | |
已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止. (1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少? (2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少? |
12. 难度:中等 | |
男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1人参加; (4)既要有队长,又要有女运动员. |