1. 难度:中等 | |
某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( ) A.一定不会淋雨 B.淋雨的可能性为 C.淋雨的可能性为 D.淋雨的可能性为 |
2. 难度:中等 | |
有一对酷爱运动的年轻夫妇给他们12个月大的婴儿3块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( ) A. B. C. D. |
3. 难度:中等 | |
某同学同时掷两颗骰子,得到点数分别为a,b,则椭圆+=1(a>b>0)的离心率e>的概率是( ) A. B. C. D. |
4. 难度:中等 | |
连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,则的概率是( ) A. B. C. D. |
5. 难度:中等 | |
先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为( ) A. B. C. D. |
6. 难度:中等 | |
电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为( ) A. B. C. D. |
7. 难度:中等 | |
已知一组抛物线y=ax2+bx+1,其中a为2、4、6、8中任取的一个数,b为1、3、5、7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是( ) A. B. C. D. |
8. 难度:中等 | |
在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). |
9. 难度:中等 | |
假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性相同,则“小燕比小明先到校,小明又比小军先到校”的概率为 . |
10. 难度:中等 | |
任取一个三位正整数n,则对数log2n是一个正整数的概率是 . |
11. 难度:中等 | |
某考生参加一所大学自主招生考试,面试时从一道数学题,两道自然科学类题,三道社科类题中任选两道回答,且该生答对每一道数学、自然科学、社科类试题的概率依次为0.6、0.7、0.8. (1)求该考生恰好抽到两道社科类试题的概率; (2)求该考生抽到的两道题属于不同学科类并且都答对的概率. |
12. 难度:中等 | |
为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数; (2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. |
13. 难度:中等 | |
把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,试就方程组解答下列各题: (1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率. |
14. 难度:中等 | |
已知关x的一元二次函数f(x)=ax2-bx+1,设集合P={1,2,3}Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数a和b得到数对(a,b). (1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率; (2)求函数y=f(x)在区间[1,+∞)上是增函数的概率. |