1. 难度:中等 | |
设F1、F2分别为双曲线的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A.3x±4y=0 B.3x±5y=0 C.4x±3y=0 D.5x±4y=0 |
2. 难度:中等 | |
已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若.则k=( ) A.1 B. C. D.2 |
3. 难度:中等 | |
已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为( ) A. B.1 C.2 D.4 |
4. 难度:中等 | |
设双曲线的-个焦点为F;虚轴的-个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A. B. C. D. |
5. 难度:中等 | |
设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=( ) A. B.8 C. D.16 |
6. 难度:中等 | |
设O为坐标原点,F1,F2是双曲线-=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1PF2=60°,|OP|=a,则该双曲线的渐近线方程为( ) A.x±y=0 B.x±y=0 C.x±y=0 D.x±y=0 |
7. 难度:中等 | |
到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( ) A.直线 B.椭圆 C.抛物线 D.双曲线 |
8. 难度:中等 | |
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( ) A.x=1 B.x=-1 C.x=2 D.x=-2 |
9. 难度:中等 | |
已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为( ) A. B. C. D. |
10. 难度:中等 | |
若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A. B. C. D. |
11. 难度:中等 | |
若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为( ) A.2 B.3 C.6 D.8 |
12. 难度:中等 | |
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=( ) A.2 B.4 C.6 D.8 |
13. 难度:中等 | |
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点p在C上,∠F1pF2=60°,则P到x轴的距离为( ) A. B. C. D. |
14. 难度:中等 | |
椭圆的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是( ) A.(0,] B.(0,] C.[,1) D.[,1) |
15. 难度:中等 | |
抛物线y2=8x的焦点到准线的距离是( ) A.1 B.2 C.4 D.8 |
16. 难度:中等 | |
由曲线y=x2,y=x3围成的封闭图形面积为( ) A. B. C. D. |
17. 难度:中等 | |
双曲线方程为x2-2y2=1,则它的右焦点坐标为( ) A. B. C. D. |
18. 难度:中等 | |
若直线y=x+b与曲线有公共点,则b的取值范围是( ) A.[,] B.[,3] C.[-1,] D.[,3] |
19. 难度:中等 | |
若点O和点F(-2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( ) A. B. C. D. |
20. 难度:中等 | |
以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为( ) A.x2+y2+2x=0 B.x2+y2+x=0 C.x2+y2-x=0 D.x2+y2-2x=0 |
21. 难度:中等 | |
直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最大值为( ) A.+1 B.2 C. D.-1 |
22. 难度:中等 | |
设θ是△ABC的一个内角,且sinθ+cosθ=,则x2sinθ-y2cosθ=1表示( ) A.焦点在x轴上的椭圆 B.焦点在y轴上的椭圆 C.焦点在x轴上的双曲线 D.焦点在y轴上的双曲线 |
23. 难度:中等 | |
设F1,F2分别是椭圆+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF1⊥PF2,求点P的横坐标为( ) A.1 B. C.2 D. |
24. 难度:中等 | |
已知曲线C的参数方程是(φ为参数),则曲线C上的点P到定点M(-2,0)的最大距离是( ) A.9 B.8 C.7 D.6 |
25. 难度:中等 | |
已知点P(3,-4)是双曲线-=1(a>0,b>0)渐近线上的一点,E,F是左、右两个焦点,若•=0,则双曲线方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 |
26. 难度:中等 | |
已知椭圆与双曲线(m,n,p,q∈R+)有共同的焦点F1,F2,P是两曲线的一个公共交点.则|PF1|•|PF2|的值是( ) A.p2-m2 B.p-m C.m-p D.m2-p2 |
27. 难度:中等 | |
设圆C的圆心在双曲线-=1(a>0)的右焦点且与此双曲线的渐近线相切,若圆C被直线l:x-y=0截得的弦长等于2,则a的值为( ) A. B. C.2 D.3 |
28. 难度:中等 | |
已知双曲线9y2-m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=( ) A.1 B.2 C.3 D.4 |
29. 难度:中等 | |
过双曲线2x2-y2-8x+6=0的由焦点作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线有( ) A.4条 B.3条 C.2条 D.1条 |
30. 难度:中等 | |
已知双曲线的一条渐近线方程为,则双曲线的离心率为( ) A. B. C. D. |
31. 难度:中等 | |
过椭圆左焦点F且倾斜角为60°的直线交椭圆于A,B两点,若|FA|=|FB|,则椭圆的离心率等于( ) A. B. C. D. |
32. 难度:中等 | |
已知F1,F2分别是双曲线-=1(a>b>0)的两个焦点,A和B是以O(O为坐标原点)为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为( ) A. B. C. D.+1 |
33. 难度:中等 | |
双曲线x2-y2=2的左、右焦点分别为F1、F2,点Pn(xn,yn)(n=1,2,3…)在其右支上,且满足|Pn+1F2|=|PnF1|,P1F2⊥F1F2,则x2010的值是( ) A.4020 B.4019 C.4020 D.4019 |
34. 难度:中等 | |
设P是椭圆+=1上一点,M,N分别是两圆:(x+2)2+y2=1和(x-2)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为( ) A.4,8 B.2,6 C.6,8 D.8,12 |
35. 难度:中等 | |
抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是( ) A. B. C. D.3 |
36. 难度:中等 | |
如图抛物线C1:y2=2px和圆C2:+y2=,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,B,C,D四点,则•的值为( ) A. B. C. D.P2 |
37. 难度:中等 | |
AB是抛物线y2=2x的一条焦点弦,|AB|=4,则AB中点C的横坐标是( ) A.2 B. C. D. |
38. 难度:中等 | |
已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( ) A. B.3 C. D. |
39. 难度:中等 | |
直线MN与双曲线C:-=1(a>0,b>0)的左右支分别交于M、N点,与双曲线的右准线相交于P点,F为右焦点,若|FM|=2|FN|,又=λ(λ∈R),则实数λ的值为( ) A. B.2 C. D.3 |
40. 难度:中等 | |
已知P为抛物线y2=4x上一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1、l2的距离之和的最小值为( ) A.2 B.4 C. D.+1 |
41. 难度:中等 | |
“双曲线的方程为-=1”是“双曲线的离心率为”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
42. 难度:中等 | |
若双曲线的一条准线与抛物线y2=8x的准线重合,则双曲线离心率为( ) A. B. C.4 D. |
43. 难度:中等 | |
过双曲线-=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是( ) A. B. C. D. |
44. 难度:中等 | |
已知点P是以F1、F2为左、右焦点的双曲线左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为( ) A. B. C. D. |
45. 难度:中等 | |
下列三图中的多边形均为正多边形,M,N是所在边的中点,双曲线均以图中的F1,F2为焦点,设图示①②③中的双曲线的离心率分别为e1,e2,e3、则e1,e2,e3的大小关系为( ) A.e1>e2>e3 B.e1<e2<e3 C.e2=e3<e1 D.e1=e3>e2 |
46. 难度:中等 | |
已知椭圆+=1(a>0,b>0),A是椭圆长轴的一个端点,B是椭圆短轴的一个端点,F为椭圆的一个焦点.若AB⊥BF,则该椭圆的离心率为( ) A. B. C. D. |
47. 难度:中等 | |
已知A,B,P是双曲线上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率为( ) A. B. C. D. |
48. 难度:中等 | |
已知两个正数a、b的等差中项为5,等比中项为4,则双曲线的离心率e等于( ) A. B. C. D. |
49. 难度:中等 | |
平面内到定点A(1,2)与到定直线2x+y-4=0的距离相等的点的轨迹是( ) A.直线 B.抛物线 C.椭圆 D.双曲线 |
50. 难度:中等 | |
若圆O1方程为(x+1)2+(y+1)2=4,圆O2方程为(x-3)2+(y-2)2=1,则方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的轨迹是( ) A.线段O1O2的中垂线 B.过两圆内公切线交点且垂直线段O1O2的直线 C.两圆公共弦所在的直线 D.一条直线且该直线上的点到两圆的切线长相等 |
51. 难度:中等 | |
已知定点A(1,0)和定直线l:x=-1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为( ) A.y2=4 B.y2=4x(x≠0) C.y2=-4 D.y2=-4x(x≠0) |
52. 难度:中等 | |
已知P是以F1,F2为焦点的椭圆上的一点,若PF1⊥PF2,tan∠PF1F2=,则此椭圆的离心率为( ) A. B. C. D. |
53. 难度:中等 | |
设F为抛物线y=-的焦点,与抛物线相切于点P(-4,-4)的直线l与x轴的交点为Q,则∠PQF等于( ) A.30° B.45° C.60° D.90° |
54. 难度:中等 | |
已知点F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若△ABF2为锐角三角形,则该双曲线的离心率e的取值范围是( ) A.(1,+∞) B. C.(1,2) D. |
55. 难度:中等 | |
(理)已知双曲线的左焦点为F1,左、右顶点为A1、A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为( ) A.相交 B.相切 C.相离 D.以上情况都有可能 |
56. 难度:中等 | |
设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为 . |
57. 难度:中等 | |
已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p= . |
58. 难度:中等 | |
点A(x,y)在双曲线的右支上,若点A到右焦点的距离等于2x,则x= . |
59. 难度:中等 | |
抛物线y2=8x的焦点坐标是 |
60. 难度:中等 | |
已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|= . |
61. 难度:中等 | |
已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 . |
62. 难度:中等 | |
已知双曲线的一条渐近线方程是,它的一个焦点与抛物线y2=16x的焦点相同.则双曲线的方程为 . |
63. 难度:中等 | |
若双曲线-=1(b>0)的渐近线方程式为y=,则b等于 . |
64. 难度:中等 | |
已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为 . |
65. 难度:中等 | |
已知椭圆的两焦点为F1,F2,点P(x,y)满足,则|PF1|+PF2|的取值范围为 ,直线与椭圆C的公共点个数 . |
66. 难度:中等 | |
在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是 |
67. 难度:中等 | |
已知椭圆+=1的左、右焦点分F1、F2,M是椭圆上一点,N是MF1的中点,若|ON|=1(O为坐标原点),则|MF1|等于 . |
68. 难度:中等 | |
点P是椭圆+=1上一点,F1,F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限时,P点的纵坐标为 . |
69. 难度:中等 | |
已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是 . |
70. 难度:中等 | |
已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则•最小值为 . |
71. 难度:中等 | |
直线x=t过双曲线-=1(a>0,b>0)的右焦点且与双曲线的两条渐近线分别交于A,B两点,若原点在以AB为直径的圆外,则双曲线离心率的取值范围是 . |
72. 难度:中等 | |
双曲线-=1的渐近线方程为y=±2x,则n= . |
73. 难度:中等 | |
已知椭圆的参数方程为(θ∈R),则该椭圆的焦距为 . |
74. 难度:中等 | |
已知双曲线-=1(m>0)的一个顶点到它的一条渐近线的距离为1,则m= . |
75. 难度:中等 | |
双曲线-=1上有一点P到左准线的距离为,则P到右焦点的距离为 . |
76. 难度:中等 | |
(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为 . |
77. 难度:中等 | |
已知双曲线-=1的一条渐近线方程为y=x,则抛物线y2=4ax上一点M(2,y)到该抛物线焦点F的距离是 . |
78. 难度:中等 | |
如图,过抛物线y2=4x的焦点F的直线交抛物线与圆(x-1)2+y2=1于A,B,C,D四点,则|AB|•|CD|= . |
79. 难度:中等 | |
已知点F、A分别为双曲线C:(a>0,b>0)的左焦点、右顶点,点B(0,-b)满足,则双曲线的离心率为 . |
80. 难度:中等 | |
已知a>b>0,e1,e2分别是圆锥曲线和的离心率,设m=lne1+lne2,则m的取值范围是 . |
81. 难度:中等 | |
抛物线y=ax2的准线方程是y=1,则a的值为 . |
82. 难度:中等 | |
若直线l过抛物线y=ax2(a>0)的焦点,并且与y轴垂直,若l被抛物线截得的线段长为4,则a= . |
83. 难度:中等 | |
从双曲线-=1的左焦点F引圆x2+y2=3的切线FP交双曲线右支于点P,T为切点,M为线段FP的中点,O为坐标原点,则|MO|-|MT|等于 . |
84. 难度:中等 | |
已知椭圆Γ的方程为,A(0,b)、B(0,-b)和Q(a,0)为Γ的三个顶点. (1)若点M满足,求点M的坐标; (2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若,证明:E为CD的中点; (3)设点P在椭圆Γ内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足?令a=10,b=5,点P的坐标是(-8,-1),若椭圆Γ上的点P1、P2满足,求点P1、P2的坐标. |
85. 难度:中等 | |
为了考察冰川的融化状况,一支科考队在某冰川山上相距8Km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(如图).考察范围到A、B两点的距离之和不超过10Km的区域. (1)求考察区域边界曲线的方程: (2)如图所示,设线段P1P2(3)是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍.问:经过多长时间,点A恰好在冰川边界线上? |
86. 难度:中等 | |
已知m>1,直线l:x-my-=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点. (Ⅰ)当直线l过右焦点F2时,求直线l的方程; (Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围. |
87. 难度:中等 | |
设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为. (Ⅰ)求椭圆C的焦距; (Ⅱ)如果,求椭圆C的方程. |
88. 难度:中等 | |
设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,. (1)求椭圆C的离心率; (2)如果|AB|=,求椭圆C的方程. |
89. 难度:中等 | |
设椭圆C2:=1(a>b>0),抛物线C2:x2+by=b2. (1)若C2经过C1的两个焦点,求C1的离心率; (2)设A(0,b),,又M、N为C1与C2不在y轴上的两个交点,若△AMN的垂心为,且△QMN的重心在C2上,求椭圆C和抛物线C2的方程. |
90. 难度:中等 | |
椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=. (Ⅰ)求椭圆E的方程; (Ⅱ)求∠F1AF2的角平分线所在直线的方程. |
91. 难度:中等 | |
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P. (Ⅰ)求椭圆C的方程; (Ⅱ)若圆P与x轴相切,求圆心P的坐标; (Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值. |
92. 难度:中等 | |
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-. (Ⅰ)求动点P的轨迹方程; (Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由. |
93. 难度:中等 | |
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N. (Ⅰ)求E的方程; (Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由. |
94. 难度:中等 | |
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4. (Ⅰ)求椭圆的方程; (Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0). (i)若,求直线l的倾斜角; (ii)若点Q(0,y)在线段AB的垂直平分线上,且.求y的值. |
95. 难度:中等 | |
已知双曲线的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点. (1)求直线A1P与A2Q交点的轨迹E的方程; (2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值. |
96. 难度:中等 | |
在平面直角坐标系xoy中,如图,已知椭圆的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0. (1)设动点P满足PF2-PB2=4,求点P的轨迹; (2)设,求点T的坐标; (3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关). |
97. 难度:中等 | |
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点. (1)求椭圆C的方程; (2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由. |
98. 难度:中等 | |
已知动圆P过点N(2,0)并且与圆M:(x+2)2+y2=4相外切,动圆圆心P的轨迹为W,过点N的直线l与轨迹W交于A、B两点. (1)求轨迹W的方程; (2)若2=,求直线l的方程; (3)对于l的任意一确定的位置,在直线x=上是否存在一点Q,使得•=0,并说明理由. |
99. 难度:中等 | |
已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为,且点(1,)在该椭圆上. (I)求椭圆C的方程; (II)过椭圆C的左焦点F1的直线l与椭圆C相交于A,B两点,若△AOB的面积为,求圆心在原点O且与直线l相切的圆的方程. |
100. 难度:中等 | |
已知椭圆+=1(a>b>0),直线l与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.直线AB与直线OM的斜率分别为k、m,且km=-. (Ⅰ)求b的值; (Ⅱ)若直线AB经过椭圆的右焦点F,问:对于任意给定的不等于零的实数k,是否存在a∈[2,+∞],使得四边形OACB是平行四边形,请证明你的结论. |
101. 难度:中等 | |
已知抛物线方程x2=4y,过点(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B. (I)求证直线AB过定点(0,4); (II)求△OAB(O为坐标原点)面积的最小值. |
102. 难度:中等 | |
已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点. (Ⅰ)若点P为抛物线的焦点,求抛物线C的方程; (Ⅱ)若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与y轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由. |
103. 难度:中等 | |
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上. (Ⅰ)求椭圆C的方程; (Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程. |
104. 难度:中等 | |
已知椭圆的中心在原点,焦点F在y轴的非负半轴上,点F到短轴端点的距离是4,椭圆上的点到焦点F距离的最大值是6. (Ⅰ)求椭圆的标准方程和离心率e; (Ⅱ)若F′为焦点F关于直线y=的对称点,动点M满足=e,问是否存在一个定点A,使A到点A的距离为定值?若存在,求出点A的坐标及此定值;若不存在,请说明理由. |
105. 难度:中等 | |
已知定点A(0,-1),点B在圆F:x2+(y-1)2=16上运动,F为圆心,线段AB的垂直平分线交BF于P. (I)求动点P的轨迹E的方程;若曲线Q:x2-2ax+y2+a2=1被轨迹E包围着,求实数a的最小值. (II)已知M(-2,0)、N(2,0),动点G在圆F内,且满足|MG|•|NG|=|OG|2,求的取值范围. |
106. 难度:中等 | |
在直角坐标系xOy中,点M到F1、F2的距离之和是4,点M的轨迹C与x轴的负半轴交于点A,不过点A的直线l:y=kx+b与轨迹C交于不同的两点P和Q. (1)求轨迹C的方程; (2)当时,求k与b的关系,并证明直线l过定点. |
107. 难度:中等 | |
已知圆M:(x-m)2+(y-n)2=γ2及定点N(1,0),点P是圆M上的动点,点Q在NP上,点G在MP上,且满足=2,•=0. (Ⅰ)若m=-1,n=0,r=4,求点G的轨迹C的方程; (Ⅱ)若动圆M和(Ⅰ)中所求轨迹C相交于不同两点A、B,是否存在一组正实数m,n,r使得直线MN垂直平分线段AB,若存在,求出这组正实数;若不存在,说明理由. |
108. 难度:中等 | |
已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切. (Ⅰ)求椭圆C的方程; (Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围; (Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点. |