相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2010年高考数学专项复习:创新题(3)(解析版)
一、选择题
详细信息
1. 难度:中等
设X=[a,b],Y=[c,d]都是闭区间,则“直积”X×Y={(x,y)|x∈X,y∈Y}表示直角坐标平面上的( )
A.一条线段
B.两条线段
C.四条线段
D.包含内部及边界的矩形区域
详细信息
2. 难度:中等
若称manfen5.com 满分网为n个正数,a1,a2…,an的“均倒数”,数列{an}的各项均为正,但其前n项的“均倒数”为manfen5.com 满分网,则数列{an}的通项公式为( )
A.2n-1
B.4n-3
C.4n-1
D.4n-5
详细信息
3. 难度:中等
定义一种运算“*”:对于自然数n满足以下运算性质:(i)1*1=1,(ii)(n+1)*1=n*1+1,则n*1等于( )
A.n
B.n+1
C.n-1
D.n2
二、解答题
详细信息
4. 难度:中等
若定义在区间D上的函数f(x)对D上的任意n个值x1,x2,…,xn,总满足manfen5.com 满分网[f(x1)+f(x2)+…+f(xn)]≤f
manfen5.com 满分网),则称f(x)为D上的凸函数.已知函数y=sinx在区间(0,π)上是“凸函数”,则在△ABC中,sinA+sinB+sinC的最大值是    
详细信息
5. 难度:中等
给出封闭函数的定义:若对于定义域D内的任意一个自变量x,都有函数值f(x)∈D,则称函数y=f(x)在D上封闭.若定义域D=(0,1),则函数①f1(x)=3x-1;②f2(x)=-manfen5.com 满分网x2-manfen5.com 满分网x+1;③f3(x)=1-x;④f4(x)=x,其中在D上封闭的是    .(填序号即可)
详细信息
6. 难度:中等
已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有   
详细信息
7. 难度:中等
现定义命题演算的合式公式(wff),规定为:
A、单个命题本身是一个合式公式;
B、如果A是合式公式,那么¬A是合式公式;
C、如果A和B是合式公式,那么(A∧B),(A∨B),(A→B),(A↔B)都是合式公式;
D、当且仅当能够有限次地运用A、B、C所得到的命题是合式公式.
说明:考生无需知道(A∧B),(A∨B),(A→B),(A↔B)所表示的具体含义.
下列公式是合式公式的是:   
①((¬P→Q)→(Q→P))②(Q→R∧S)③(RS→T)
④(P↔(R→S))⑤((P→(Q→R))→((P→Q)→(P→R))
详细信息
8. 难度:中等
给出下列四个命题:
①设x1,x2∈R,则x1>1且x2>1的充要条件是x1+x2>2且x1x2>1;
②任意的锐角三角形ABC中,有sinA>cosB成立;
③平面上n个圆最多将平面分成2n2-4n+4个部分;
④空间中直角在一个平面上的正投影可以是钝角.
其中真命题的序号是    (要求写出所有真命题的序号).
详细信息
9. 难度:中等
如果对于函数f(x)的定义域内任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”;
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤manfen5.com 满分网成立.
(3)设a、m为实常数,m>0.若f(x)=alnx是区间[m,+∞)上的“平缓函数”,试估计a的取值范围(用m表示,不必证明).
详细信息
10. 难度:中等
定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)[文科]若g(x)=lgx是(2)中数列{cn}的“保三角形函数”,问数列{cn}最多有多少项.
[理科]根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d,(d>0)提出一个正确的命题,并说明理由.
详细信息
11. 难度:中等
如图,已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1manfen5.com 满分网+y2=1和C2manfen5.com 满分网+manfen5.com 满分网=1,判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

manfen5.com 满分网
详细信息
12. 难度:中等
设集合W是满足下列两个条件的无穷数列{an}的集合:①对任意n∈N+manfen5.com 满分网≤an+1,恒成立;②对任意n∈N+,存在与n无关的常数M,使an≤M恒成立.
(Ⅰ)若{an}是等差数列,Sn是其前n项的和,且a3=4,S3=18,试探究数列{Sn}与集合W之间的关系;
(Ⅱ)设数列{bn}的通项公式为bn=5n-2n,且{bn}∈W,求M的取值范围.
详细信息
13. 难度:中等
设f(x)的定义域为(0,+∞),f(x)的导函数为f′(x),且对任意正数x均有f′(x)>manfen5.com 满分网
(Ⅰ)判断函数F(x)=manfen5.com 满分网在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),比较f(x1)+f(x2)与f(x1+x2)的大小,并证明你的结论.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.