1. 难度:中等 | |
在复平面内,复数(i是虚数单位)对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
2. 难度:中等 | |
sin75°cos30°-cos75°sin30°的值为( ) A.1 B. C. D. |
3. 难度:中等 | |
“”是“A=30°”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也必要条件 |
4. 难度:中等 | |
已知等差数列{an}的前n项和为Sn,且满足-=1,则数列{an}的公差是( ) A. B.1 C.2 D.3 |
5. 难度:中等 | |
在同一坐标系中画出函数y=logax,y=ax,y=x+a的图象,可能正确的是( ) A. B. C. D. |
6. 难度:中等 | |
一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为( ) A.6 B.8 C. D.12 |
7. 难度:中等 | |
给出下列四个命题: ①若集合A,B满足A∩B=A,则A⊆B; ②给定命题p,q,若“p∨q”为真,则“p∧q”为真; ③设a,b,m∈R,若a<b,则am2<bm2; ④若直线l1:ax+y+1=0与直线l2:x-y+1=0垂直,则a=1. 其中正确命题的个数是( ) A.1 B.2 C.3 D.4 |
8. 难度:中等 | |
直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最大值为( ) A.+1 B.2 C. D.-1 |
9. 难度:中等 | |
若x>0,则x+的最小值为 . |
10. 难度:中等 | |
(上海卷理3文8)动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则P的轨迹方程为 . |
11. 难度:中等 | |
已知不等式组,表示的平面区域的面积为4,点P(x,y)在所给平面区域内,则z=2x+y的最大值为 . |
12. 难度:中等 | |
如图是某班一次数学测验成绩的频数分布直方图,则数学成绩在69.5~89.5分范围内的学生占全体学生的 . |
13. 难度:中等 | |
已知程序框图如图所示,则执行该程序后输出的结果是 . |
14. 难度:中等 | |
若点集A={(x,y)|x2+y2≤1},B={(x,y)|-1≤x≤1,-1≤y≤1},则 (1)点集P={(x,y)|x=x1+1,y=y1+1,(x1,y1)∈A}所表示的区域的面积为 ; (2)点集M={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为 . |
15. 难度:中等 | |
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,),其部分图象如图所示. (I)求f(x)的解析式; (II)求函数在区间上的最大值及相应的x值. |
16. 难度:中等 | |
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动. (I)若顾客甲消费了128元,求他获得优惠券面额大于0元的概率? (II)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率? |
17. 难度:中等 | |
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2. (I)证明:BC⊥平面AMN; (II)求三棱锥N-AMC的体积; (III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由. |
18. 难度:中等 | |
已知函数f(x)=x2-1与函数g(x)=alnx(a≠0). (I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值; (II)设F(x)=f(x)-2g(x),求函数F(x)的极值. |
19. 难度:中等 | |
已知椭圆C的对称中心为原点O,焦点在x轴上,离心率为,且点(1,)在该椭圆上. (I)求椭圆C的方程; (II)过椭圆C的左焦点F1的直线l与椭圆C相交于A,B两点,若△AOB的面积为,求圆心在原点O且与直线l相切的圆的方程. |
20. 难度:中等 | |
已知数列{an}满足:a1=1,,n=2,3,4,…. (Ⅰ)求a3,a4,a5的值; (Ⅱ)设,n=1,2,3…,求证:数列{bn}是等比数列,并求出其通项公式; (Ⅲ)对任意的m≥2,m∈N*,在数列{an}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,说明理由. |