1. 难度:中等 | |
把正整数按一定的规则排成了如图所示的三角形数表.设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a42=8.若aij=2009,则i与j的和为( ) A.105 B.106 C.107 D.108 |
2. 难度:中等 | |
下列平面图形中与空间的平行六面体作为类比对象较合适的是( ) A.三角形 B.梯形 C.平行四边形 D.矩形 |
3. 难度:中等 | |
广州2010年亚运会火炬传递在A、B、C、D、E五个城市之间进行,各城市之间的路线距离(单位:百公里)见如表,若以A为起点,E为终点,每个城市经 过且只经过一次,那么火炬传递的最短路线距离是( ) A.20.6 B.21 C.22 D.23 |
4. 难度:中等 | |
下面几种推理过程是演绎推理的是( ) A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180° B.某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人 C.由平面三角形的性质,推测空间四面体的性质 D.在数列{an}中,a1=1,an=(an-1+)(n≥2),由此归纳出{an}的通项公式 |
5. 难度:中等 | |
“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是( ) A.大前提错导致结论错 B.小前提错导致结论错 C.推理形式错导致结论错 D.大前提和小前提错都导致结论错 |
6. 难度:中等 | |
为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem),其加密、解密原理如图: 现在加密密钥为y=loga(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为( ) A.12 B.13 C.14 D.15 |
7. 难度:中等 | |
已知,设f1(x)=f(x),fn(x)=fn-1[fn-1(x)](n>1,n∈N*),则f3(x)的表达式为 ,猜想fn(x)(n∈N*)的表达式为 . |
8. 难度:中等 | |
对大于或等于2的自然数m的n次方幂有如下分解方式: 22=1+3 32=1+3+5 42=1+3+5+7 23=3+5 33=7+9+11 43=13+15+17+19 根据上述分解规律,则52= ,若m3(m∈N*)的分解中最小的数是21,则m的值为 . |
9. 难度:中等 | |
若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= . |
10. 难度:中等 | |
已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=;现已知等比数列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若类比上述结论,则可得到bm+n= . |
11. 难度:中等 | |
已知:sin230°+sin290°+sin2150°=, sin25°+sin265°+sin2125°=. 通过观察上述两等式的规律,请你写出一般性的命题,并给出证明. |
12. 难度:中等 | |
在△ABC中,射影定理可以表示为a=bcosC+ccosB,其中a、b、c依次为角A、B、C的对边,类比以上定理,给出空间四面体性质的猜想. |