1. 难度:中等 | |
(填空题压轴题:考查函数的性质,字母运算等) 设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2011型增函数”,则实数a的取值范围是 . |
2. 难度:中等 | |
已知函数f(x)=,无论t取何值,函数f(x)在区间(-∞,+∞)总是不单调.则a的取值范围是 . |
3. 难度:中等 | |
设△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足. (Ⅰ)求角B的大小; (Ⅱ)若,试求的最小值. |
4. 难度:中等 | |
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,,AB=2CD=8. (1)设M是PC上的一点,证明:平面MBD⊥平面PAD; (2)当M点位于线段PC什么位置时,PA∥平面MBD? |
5. 难度:中等 | |
已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B. (1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e; (ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围; (2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值. |
6. 难度:中等 | |
已知椭圆+=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足||=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足•=0,||≠0. (Ⅰ)设x为点P的横坐标,证明||=a+x; (Ⅱ)求点T的轨迹C的方程; (Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2.若存在,求∠F1MF2的正切值;若不存在,请说明理由. |
7. 难度:中等 | |
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元. (1)写出y(单位:元)关于ω单位:克)的函数关系式; (2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率; (3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=×100%;在切割过程中的重量损耗忽略不计) |
8. 难度:中等 | |
省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=+2a+,x∈R,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a). (1)令t=,x∈R,求t的取值范围; (2)省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标? |
9. 难度:中等 | |
已知无穷数列{an}中,a1,a2,…,am是首项为10,公差为-2的等差数列;am+1,am+2,…a2m是首项为,公比为的等比数列(m≥3,m∈N*),并对任意n∈N*,均有an+2m=an成立. (1)当m=12时,求a2010; (2)若,试求m的值; (3)判断是否存在m,使S128m+3≥2010成立,若存在,求出m的值;若不存在,请说明理由. |
10. 难度:中等 | |
已知数列{an}的通项公式是an=2n-1,数列{bn}是等差数列,令集合A={a1,a2,…,an,…},B={b1,b2,…,bn,…},n∈N*.将集合A∪B中的元素按从小到大的顺序排列构成的数列记为{cn}.(1)若cn=n,n∈N*,求数列{bn}的通项公式;(2)若A∩B=∅,数列{cn}的前5项成等比数列,且c1=1,c9=8,求的正整数n的个数. |
11. 难度:中等 | |
已知函数(a>0,a≠1), (1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围; (2)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围. |
12. 难度:中等 | |
已知斜三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1. (Ⅰ)求证:AC1⊥平面A1BC; (Ⅱ)求C1到平面A1AB的距离; (Ⅲ)求二面角A-A1B-C的余弦值. |
13. 难度:中等 | |
用a,b,c,d四个不同字母组成一个含n+1(n∈N+)个字母的字符串,要求由a开始,相邻两个字母不同.例如n=1时,排出的字符串是ab,ac,ad;n=2时排出的字符串是aba,abc,abd,aca,acb,acd,ada,adb,adc,…,如图所示.记这含n+1个字母的所有字符串中,排在最后一个的字母仍是a的字符串的种数为an. (1)试用数学归纳法证明:; (2)现从a,b,c,d四个字母组成的含n+1(n∈N*,n≥2)个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是a的概率为P,求证:. |