1. 难度:中等 | |
已知复数z1=2+i,z2=1-i,则z=z1-z2在复平面上对应的点位于( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 |
2. 难度:中等 | |
已知向量||=10,||=12,且=-60,则向量与的夹角为( ) A.60° B.120° C.135° D.150° |
3. 难度:中等 | |
在等比数列{an}中,a5•a11=3,a3+a13=4,则=( ) A.3 B. C.3或 D.-3或 |
4. 难度:中等 | |
设a表示平面,a,b表示直线,给定下列四个命题: ①a∥α,a⊥b⇒b⊥α; ②a∥b,a⊥α⇒b⊥α; ③a⊥α,a⊥b⇒b∥α; ④a⊥α,b⊥α⇒a∥b 其中正确命题的个数有( ) A.1个 B.2个 C.3个 D.4个 |
5. 难度:中等 | |
y=(sinx-cosx)2-1是( ) A.最小正周期为2π的偶像函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为π的奇函数 |
6. 难度:中等 | |
命题“若a>b,则a-1>b-1”的否命题是( ) A.若a>b,则a-1≤b-1 B.若a≥b,则a-1<b-1 C.若a≤b,则a-1≤b-1 D.若a<b,则a-1<b-1 |
7. 难度:中等 | |
若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是( ) A. B. C. D. |
8. 难度:中等 | |
设椭圆(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为( ) A. B. C. D. |
9. 难度:中等 | |
已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是( ) A. B. C. D.(-2,3) |
10. 难度:中等 | |
对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c为常数,等号右边的运算是通常意义的加、乘运算、现已知1*2=4,2*3=6,且有一个非零实数m,使得对任意实数x,都有x*m=x,则m=( ) A.2 B.3 C.4 D.5 |
11. 难度:中等 | |
已知函数f(x)=,则f(5)= . |
12. 难度:中等 | |
已知点P(x,y)满足条件(k为常数),若z=x+3y的最大值为8,则k= . |
13. 难度:中等 | |
如图是某几何体的三视图,其中正视图是腰长为2a的等腰三角形,俯视图是半径为a的半圆,则该几何体的表面积是 . |
14. 难度:中等 | |
已知直线l:x-y+4=0与圆C:,则C上各点到l的距离的最小值为 . |
15. 难度:中等 | |
已知⊙O的割线PAB交⊙OA,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为 . |
16. 难度:中等 | |
如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A、B,观察对岸的点C,测得∠CAB=75°,∠CBA=45°,且AB=100米. (1)求sin75°; (2)求该河段的宽度. |
17. 难度:中等 | |||||||||||||||||||||||||||||
某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率? |
18. 难度:中等 | |
如图,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB二60°,E、F分别是AC、AD上的动点,且=λ(0<λ<1) (1)求证:不论λ为何值,总有EF⊥平面ABC: (2)若λ=,求三棱锥A-BEF的体积. |
19. 难度:中等 | |
已知动圆过定点F(0,2),且与定直线L:y=-2相切. (I)求动圆圆心的轨迹C的方程; (II)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ. |
20. 难度:中等 | |
已知函数f(x)=x3-3x. (1)求曲线y=f(x)在点x=2处的切线方程; (2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围. |
21. 难度:中等 | |
已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N* (1)求数列{an}的通项公式; (2)设,Tn=b1+b2+…bn,若Tn<m(m∈Z),求m的最小值; (3)求使不等式≥对一切n∈N*,均成立的最大实数p. |