1. 难度:中等 | |
设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,3},则实数P的值为( ) A.-4 B.4 C.-6 D.6 |
2. 难度:中等 | |
若的展开式中各项系数之和为256,则展开式中含x的整数次幂的项共有( ) A.1项 B.2项 C.3项 D.4项 |
3. 难度:中等 | |
已知函数f(x)=,若f[f(0)]=4a,则实数a等于( ) A. B. C.2 D.9 |
4. 难度:中等 | |
在的棱长为1的正四面体ABCD中,E是BC的中点,则=( ) A.0 B. C.- D.- |
5. 难度:中等 | |
已知曲线C:y=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要使视线不被曲线C挡住,则实数a的取值范围是( ) A.(4,+∞) B.(-∞,4) C.(10,+∞) D.(-∞,10) |
6. 难度:中等 | |
在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( ) A. B. C. D. |
7. 难度:中等 | |
已知p:存在x∈R,使mx2+1≤0;q:对任意x∈R,恒有x2+mx+1>0.若p或q为假命题,则实数m的取值范围为( ) A.m≥2 B.m≤-2 C.m≤-2,或m≥2 D.-2≤m≤2 |
8. 难度:中等 | |
设O为坐标原点,点A(1,1),若点,则取得最小值时,点B的个数是( ) A.1 B.2 C.3 D.无数个 |
9. 难度:中等 | |
已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为( ) A. B. C. D. |
10. 难度:中等 | |
已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则的最小值为( ) A. B. C. D.不存在 |
11. 难度:中等 | |
由0到9这十个数字所组成的没有重复数字的五位数中,满足千位、百位、十位上的数字成递增等差数列的五位数共有( ) A.720个 B.684个 C.648个 D.744个 |
12. 难度:中等 | |
设,若f(x)=x+a有且仅有三个解,则实数a的取值范围是( ) A.(-∞,1) B.(-∞,1] C.(-∞,2] D.(-∞,2) |
13. 难度:中等 | |
不等式log2的解集为 . |
14. 难度:中等 | |
已知二次函数y=f(x)的图象为开口向下的抛物线,且对任意x∈R都有f(1-x)=f(1+x).若向量,,则满足不等式的m的取值范围为 . |
15. 难度:中等 | |
过双曲线的一个焦点作一条渐近线的垂线,垂足恰好落在曲线上,则双曲线的离心率为 . |
16. 难度:中等 | |
若{an}是等差数列,m,n,p是互不相等的正整数,有正确的结论:(m-n)ap+(n-p)am+(p-m)an=0,类比上述性质,相应地,若等比数列{bn},m,n,p是互不相等的正整数,有 . |
17. 难度:中等 | |
在△ABC中,a、b、c分别为角A、B、C的对边,且C=,a+b=λc,(其中λ>1). (Ⅰ)若c=λ=2时,求•的值; (Ⅱ)若•=(λ4+3)时,求边长c的最小值及判定此时△ABC的形状. |
18. 难度:中等 | |
为支持2010年广洲亚运会,某班拟选派4人为志愿者参与亚运会,经过初选确定5男4女共9名同学成为候选人,每位候选人当选志愿者的机会均等. (1)求女生1人,男生3人当选时的概率? (2)设至少有几名男同学当选的概率为Pn,当时,n的最小值? |
19. 难度:中等 | |
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点. (Ⅰ)AE⊥PD判定AE与PD是否垂直,并说明理由 (Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E-AF-C的余弦值. |
20. 难度:中等 | |
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,设数列{bn}的前n项和为Sn,令Tn=S2n-Sn. (Ⅰ)求数列{bn}的通项公式; (Ⅱ)判断Tn+1,Tn(n∈N*)的大小,并说明理由. |
21. 难度:中等 | |
设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点. (Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值. |
22. 难度:中等 | |
已知函数f(x)=mx3+nx2(m,n∈R,m>n且m≠0)的图象在(2,f(2))处的切线与x轴平行. (1)试确定m、n的符号; (2)若函数y=f(x)在区间[n,m]上有最大值为m-n2,试求m的值. |