1. 难度:中等 | |
已知M={x|lgx2=0},N={x|2-1<2x+1<22,x∈Z},则M∩N= . |
2. 难度:中等 | |
若是纯虚数,则tanθ的值为 . |
3. 难度:中等 | |
若将一枚硬币连续抛掷三次,则出现“至少一次正面向上”的概率为 . |
4. 难度:中等 | |
函数的部分图象如图所示,则= . |
5. 难度:中等 | |
若双曲线经过点,且渐近线方程是,则这条双曲线的方程是 . |
6. 难度:中等 | |
图是一个算法的程序框图,该算法所输出的结果是 . |
7. 难度:中等 | |
已知正三棱锥P-ABC主视图如图所示,其中△PAB中,AB=PC=2cm,则这个正三棱锥的左视图的面积为 cm2. |
8. 难度:中等 | |||||||||||||
从某项综合能力测试中抽取100人的成绩,统计如下表,则这100人成绩的平均数为 .
|
9. 难度:中等 | |
若数列{an}满足(k为常数),则称数列{an}为等比和数列,k称为公比和.已知数列{an}是以3为公比和的等比和数列,其中a1=1,a2=2,则a2009= . |
10. 难度:中等 | |
动点P(a,b)在不等式组表示的平面区域内部及其边界上运动,则的取值范围是 . |
11. 难度:中等 | |
已知,则sin2a= . |
12. 难度:中等 | |
已知a>0,设函数的最大值为M,最小值为N,那么M+N= . |
13. 难度:中等 | |
已知P为抛物线y2=4x的焦点,过P的直线l与抛物线交与A,B两点,若Q在直线l上,且满足,则点Q总在定直线x=-1上.试猜测如果P为椭圆的左焦点,过P的直线l与椭圆交与A,B两点,若Q在直线l上,且满足,则点Q总在定直线 上. |
14. 难度:中等 | |
曲边梯形由曲线y=ex,y=0,x=1,x=5所围成,过曲线y=ex,x∈[1,5]上一点P作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,这时点P的坐标是 . |
15. 难度:中等 | |
已知向量. (I)若,求COS(-x)的值; (II)记,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围. |
16. 难度:中等 | |
已知关于x的一元二次函数f(x)=ax2-4bx+1. (1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率; (2)设点(a,b)是区域内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率. |
17. 难度:中等 | |
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1. (1)求证:AF⊥平面CBF; (2)设FC的中点为M,求证:OM∥平面DAF; (3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE. |
18. 难度:中等 | |
在平面直角坐标系xOy中,已知以O为圆心的圆与直线l:y=mx+(3-4m),(m∈R)恒有公共点,且要求使圆O的面积最小. (1)写出圆O的方程; (2)圆O与x轴相交于A、B两点,圆内动点P使、、成等比数列,求的范围; (3)已知定点Q(-4,3),直线l与圆O交于M、N两点,试判断是否有最大值,若存在求出最大值,并求出此时直线l的方程,若不存在,给出理由. |
19. 难度:中等 | |
设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=,令bn=anSn,数列的前n项和为Tn. (Ⅰ)求{an}的通项公式和Sn; (Ⅱ)求证:; (Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由. |
20. 难度:中等 | |
已知函数f(x)=2x+1定义在R上. (1)若f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和,设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式; (2)若p(t)≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围; (3)若方程p(p(t))=0无实根,求m的取值范围. |