1. 难度:中等 | |
在复平面内,复数z=对应的点位于( ) A.第一象限 B.第二象限 C.第在象限 D.第四象限 |
2. 难度:中等 | |
已知条件p:x≤1,条件q:<1,则q是¬p成立的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分也非必要条件 |
3. 难度:中等 | |||||||||||||
某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:
A.y=2x-2 B.y=()x C.y=log2 D.y=(x2-1) |
4. 难度:中等 | |
如图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ) A.84,4.84 B.84,1.6 C.85,1.6 D.85,4 |
5. 难度:中等 | |
若△ABC的周长等于20,面积是10,A=60°,则BC边的长是( ) A.5 B.6 C.7 D.8 |
6. 难度:中等 | |
若直线ax+by+1=0(a、b>0)过圆x2+y2+8x+2y+1=0的圆心,则+的最小值为( ) A.8 B.12 C.16 D.20 |
7. 难度:中等 | |
已知整数以按如下规律排成一列:(1,1)、(1,2)、(2,1)、(1,3)、(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( ) A.(10,1) B.(2,10) C.(5,7) D.(7,5) |
8. 难度:中等 | |
在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( ) A.1- B.1- C.1- D.1- |
9. 难度:中等 | |
一简单组合体的三视图及尺寸如图示(单位:cm),则该组合体的表面积为 cm2. |
10. 难度:中等 | |
已知△ABC中,点A、B、C的坐标依次是A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,则的坐标是: . |
11. 难度:中等 | |
在二项式的展开式中,x的系数是-10,则实数a的值为 . |
12. 难度:中等 | |
给出如图所示的程序框图,那么输出的数是 . |
13. 难度:中等 | |
已知ABC的三边长为a,b,c,内切圆半径为r(用S△ABC表示△ABC的面积),则S△ABC=r(a+b+c);类比这一结论有:若三棱锥A-BCD的内切球半径为R,则三棱锥体积VA-BCD= . |
14. 难度:中等 | |
在极坐标系中,点(1,0)到直线ρ(cosθ+sinθ)=2的距离为 . |
15. 难度:中等 | |
如图,点B在⊙O上,M为直径AC上一点,BM的延长线交⊙O于N,∠BNA=45°,若⊙O的半径为2,OA=OM,则MN的长为 . |
16. 难度:中等 | |
已知函数f(x)=Asin(wx+φ),(A>0,w>0,|φ|<,x∈R)的图象的一部分如图所示. (1)求函数f(x)的解析式; (2)当x∈[-6,]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值. |
17. 难度:中等 | |
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率; (Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望. |
18. 难度:中等 | |
a2,a5是方程x2-12x+27=0的两根,数列{an}是公差为正的等差数列,数列{bn}的前n项和为Tn,且Tn=1-bn(n∈N*). (1)求数列{an},{bn}的通项公式; (2)记cn=anbn,求数列{cn}的前n项和Sn. |
19. 难度:中等 | |
已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图). (1)当x=2时,求证:BD⊥EG; (2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值; (3)当f(x)取得最大值时,求二面角D-BF-C的余弦值. |
20. 难度:中等 | |
已知椭圆C:的离心率为,过坐标原点O且斜率为的直线l与C相交于A,B,|AB|=. (1)求a,b的值; (2)若动圆(x-m)2+y2=1与椭圆C和直线l都没有公共点,试求m的取值范围. |
21. 难度:中等 | |
已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,和直线m:y=kx+9.又f′(-1)=0. (1)求a的值; (2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是y=f(x)的切线;如果存在,求出k的值;如果不存在,说明理由. (3)如果对于所有x≥-2的x,都有f(x)≤kx+9≤g(x)成立,求k的取值范围. |