1. 难度:中等 | |
已知R是实数集,,则N∩CRM=( ) A.(1,2) B.[0,2] C.∅ D.[1,2] |
2. 难度:中等 | |
幂函数y=f(x)的图象经过点(4,),则f()的值为( ) A.1 B.2 C.3 D.4 |
3. 难度:中等 | |
在平行四边形ABCD中,AC为一条对角线,若,,则=( ) A.(-2,-4) B.(-3,-5) C.(3,5) D.(2,4) |
4. 难度:中等 | |
如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,主视图是边长为2的正方形,该三棱柱的左视图面积为( ) A.4 B. C. D. |
5. 难度:中等 | |
设a,b为两条直线,α,β为两个平面,则下列结论成立的是( ) A.若a⊂α,b⊂β,且a∥b,则α∥β B.若a⊂α,b⊂β,且a⊥b,则α⊥β C.若a∥α,b⊂α,则a∥b D.若a⊥α,b⊥α,则a∥b |
6. 难度:中等 | |
等比数列{an}中,a3=6,前三项和S3=∫34xdx则公比q的值为( ) A.1 B.- C.1或- D.-1或- |
7. 难度:中等 | |
函数y=ln(1-x)的图象大致为( ) A. B. C. D. |
8. 难度:中等 | |
已知双曲线的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( ) A. B. C. D. |
9. 难度:中等 | |
设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A.2 B. C. D.-2 |
10. 难度:中等 | |
函数f(x)=Asin(ωx+φ)(A>0,φ>0,|φ|<)的部分图象如图所示,则ω,φ的值分别为( ) A.2,0 B.2, C.2,- D.2, |
11. 难度:中等 | |
设a1,a2,…,a50是从-1,0,1这三个整数中取值的数列,若a1+a2+…+a50=9,且(a1+1)2+(a2+1)2+…+(a50+1)2=107,则a1,a2,…,a50中有0的个数为( ) A.10 B.11 C.12 D.13 |
12. 难度:中等 | |
设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数:fK(x)=取函数f(x)=a-|x|(a>1).当K=时,函数fK(x)在下列区间上单调递减的是( ) A.(-∞,0) B.(-a,+∞) C.(-∞,-1) D.(1,+∞) |
13. 难度:中等 | |
若sin(π+α)=,则tanα= . |
14. 难度:中等 | |
在等腰直角三角形ABC中,D是斜边BC的中点,如果AB的长为2,则的值为 . |
15. 难度:中等 | |
设变量x,y满足约束条件,则目标函数z=5x+y的最大值为 . |
16. 难度:中等 | |
椭圆的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M若MF1垂直于x轴,则椭圆的离心率为 . |
17. 难度:中等 | |
已知向量p=(a+c,b),q=(a-c,b-a)且p•q=0,其中角A,B,C是△ABC的内角a,b,c分别是角A,B,C的对边. (1)求角C的大小; (2)求sinA+sinB的取值范围. |
18. 难度:中等 | |
设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20. (1)求数列{bn}的通项公式; (2)若cn=an•bn(n=1,2,3…),Tn为数列{cn}的前n项和.求Tn. |
19. 难度:中等 | |
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,,BC=6 (Ⅰ)求证:BD⊥平面PAC; (Ⅱ)求二面角P-BD-A的大小. |
20. 难度:中等 | |
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用f(x); (2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由. |
21. 难度:中等 | |
如图,平面上定点F到定直线l的距离|FM|=2,P为该平面上的动点,过P作直线l的垂线,垂足为Q,且. (1)试建立适当的平面直角坐标系,求动点P的轨迹C的方程; (2)过点F的直线交轨迹C于A、B两点,交直线l于点N,已知为定值. |
22. 难度:中等 | |
已知f(x)=xlnx,g(x)=-x2+ax-3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围; (3)证明:对一切x∈(0,+∞),都有成立. |