1. 难度:中等 | |
已知集合A={x|x≤3},B={x|x≥a},且A∪B=R,则实数a的取值范围是( ) A.(3,∞) B.(-∞,3] C.[3,∞) D.R |
2. 难度:中等 | |
已知复数z的实部为-1,虚部为2,则=( ) A.2-i B.2+i C.-2-i D.-2+i |
3. 难度:中等 | |
若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( ) A.91.5和91.5 B.91.5和92 C.91和91.5 D.92和92 |
4. 难度:中等 | |
如图是一个几何体的三视图,若它的体积是,则图中主视图所标a=( ) A.1 B. C. D. |
5. 难度:中等 | |
已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
6. 难度:中等 | |
已知直线l1:(k-3)x+(4-k)y+1=0,与l2:2(k-3)x-2y+3=0,平行,则K得值是( ) A.1或3 B.1或5 C.3或5 D.1或2 |
7. 难度:中等 | |
为了得到函数的图象,只需把函数y=log2x的图象上所有的点( ) A.向左平移3个单位长度,再向上平移1个长度单位 B.向右平移3个单位长度,再向上平移1个长度单位 C.向左平移3个单位长度,再向下平移1个长度单位 D.向右平移3个单位长度,再向下平移1个长度单位 |
8. 难度:中等 | |
某程序框图如图所示,该程序运行后输出的k的值是( ) A.4 B.5 C.6 D.7 |
9. 难度:中等 | |
已知函数的最小正周期为π,为了得到函数g(x)=cosϖx的图象,只要将y=f(x)的图象( ) A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向右平移个单位长度 |
10. 难度:中等 | |
定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0.则当n∈N*时,有( ) A.f(-n)<f(n-1)<f(n+1) B.f(n-1)<f(-n)<f(n+1) C.f(n+1)<f(-n)<f(n-1) D.f(n+1)<f(n-1)<f(-n) |
11. 难度:中等 | |
若向量,用向量表示向量,则= . |
12. 难度:中等 | |
在区间[-1,2]上随即取一个数x,则x∈[0,1]的概率为 . |
13. 难度:中等 | |
若x>0,则x+的最小值为 . |
14. 难度:中等 | |
在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为 . |
15. 难度:中等 | |
本题(1)(2)(3)三个选答题,每小题5分,请考生任选1题作答,如果多做,则按所做的前1题计分. (1)(选修4-1,几何证明选讲)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,CD的中点,则EF= . (2)(选修4-4,坐标系与参数方程)在极坐标系(ρ,θ)(0≤θ≤2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为 . (3)(选修4-1,不等式选讲)已知函数f(x)=|x-a|.若不等式f(x)≤3的解集为{x|-1≤x≤5},则实数a的值为 . |
16. 难度:中等 | |
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn. (1)求a4及Sn; (2)令(n∈N*),求数列{bn}的前n项和Tn. |
17. 难度:中等 | |
设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且. (1)求角A的值; (2)若. |
18. 难度:中等 | |||||||||||||||||
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名观众,大于40岁的观众应该抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. |
19. 难度:中等 | |
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD (I)求证:AB⊥DE (Ⅱ)求三棱锥E-ABD的侧面积. |
20. 难度:中等 | |
已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q). (Ⅰ)求椭圆C的方程; (Ⅱ)设点P是椭圆C的左准线与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l的斜率的取值范围. |
21. 难度:中等 | |
已知函数,其中a>0. (1)若f(x)在x=1处取得极值,求a的值; (2)求f(x)的单调区间; (3)若f(x)的最小值为1,求a的取值范围. |