相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2011年广东省深圳市高考数学最后冲刺压轴试卷(理科)(解析版)
一、选择题
详细信息
1. 难度:中等
已知集合M={x|x2-4x+3<0},N={x|2x+1<5},则M∪N=( )
A.{x|x>3}
B.{x|x>2}
C.{x|x<3}
D.{x|x<2}
详细信息
2. 难度:中等
manfen5.com 满分网=a+bi(a,b∈R),i是虚数单位,则乘积ab的值是( )
A.-15
B.3
C.-3
D.5
详细信息
3. 难度:中等
设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列命题:
①若m⊥α,n∥α,则m⊥n;
②若α⊥γ,β⊥γ则α∥β;
③若m∥α,n∥α,则m∥n;
④若α∥β,β∥γ,m⊥α则m⊥γ.
其中正确命题的个数是( )
A.0
B.1
C.2
D.3
详细信息
4. 难度:中等
若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
5. 难度:中等
函数y=sinπx(x∈R)的部分图象如图所示,设O为坐标原点,P是图象的最高点,B是图象与x轴的交点,则tan∠OPB=( )
manfen5.com 满分网
A.10
B.8
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
6. 难度:中等
把正整数排列成三角形数阵(如图甲),如果擦去第偶数行中的奇数和第奇数行中的偶数,得到新的三角形数阵(如图乙),再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},则a2011=( )
manfen5.com 满分网
A.3955
B.3957
C.3959
D.3961
详细信息
7. 难度:中等
若不等式组manfen5.com 满分网表示的平面区域为M,x2+y2≤1所表示的平面区域为N,现随机向区域M内抛一粒豆子,则豆子落在区域N内的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
8. 难度:中等
设F1、F2分别双曲线manfen5.com 满分网的左、右焦点,若双曲线右支上存在一点P满足manfen5.com 满分网,则双曲线的渐近线方程为( )
A.3x±4y=0
B.3x±5y=0
C.4x±3y=0
D.5x±4y=0
二、解答题
详细信息
9. 难度:中等
已知向量manfen5.com 满分网manfen5.com 满分网,设manfen5.com 满分网manfen5.com 满分网的夹角为θ,则θ=   
详细信息
10. 难度:中等
已知实数a为manfen5.com 满分网的展开式中x2的系数,则manfen5.com 满分网=   
详细信息
11. 难度:中等
定义某种运算⊗,a⊗b的运算原理如右图所示.设f(x)=(0⊗x)x-(2⊗x).则f(2)=    ;f(x)在区间[-2,2]上的最小值为   
manfen5.com 满分网
详细信息
12. 难度:中等
已知函数f'(x)、g'(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图所示:
①若f(1)=1,则f(-1)=   
②设函数h(x)=f(x)-g(x),则h(-1),h(0),h(1)的大小关系为    .(用“<”连接)
manfen5.com 满分网
详细信息
13. 难度:中等
在直角坐标平面内,已知点列P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),…如果k为正偶数,则向量manfen5.com 满分网的纵坐标(用k表示)为   
详细信息
14. 难度:中等
(坐标系与参数方程选做题)若曲线manfen5.com 满分网为参数)与曲线:manfen5.com 满分网(θ为参数)相交于A,B两点,则|AB|=   
详细信息
15. 难度:中等
(几何证明选讲选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为   
manfen5.com 满分网
详细信息
16. 难度:中等
已知函数manfen5.com 满分网的最小正周期为3π.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,且manfen5.com 满分网;求角C的大小;
(Ⅲ)在(Ⅱ)的条件下,若manfen5.com 满分网的值.
详细信息
17. 难度:中等
已知海岸边A,B两海事监测站相距60nmile,为了测量海平面上两艘油轮C,D间距离,在A,B两处分别测得∠CBD=75°,∠ABC=30°,∠DAB=45°,∠CAD=60°(A,B,C,D在同一个水平面内).请计算出C,D两艘轮船间距离.

manfen5.com 满分网
详细信息
18. 难度:中等
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图)再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;
分组(单位:岁)频数频率
[20,25]50.05
[25,30]0.20
[30,35]35
[35,40]300.30
[40,45]100.10
合计1001.00
(Ⅱ)在抽出的100名志原者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.

manfen5.com 满分网
详细信息
19. 难度:中等
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.图1是甲流水线样本的频率分布直方图,表1是乙流水线样本频数分布表.
manfen5.com 满分网
(1)若以频率作为概率,试估计从甲流水线上任取5件产品,求其中合格品的件数X的数学期望;
(2)从乙流水线样本的不合格品中任意取2件,求其中超过合格品重量的件数Y的分布列;
(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线乙流水线  合计
合格品a=b=
不合格品c=d=
合 计n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的临界值表供参考:
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
详细信息
20. 难度:中等
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使manfen5.com 满分网,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)设点N是线段BD上一个动点,试确定N点的位置,使得manfen5.com 满分网,并证明你的结论.manfen5.com 满分网
详细信息
21. 难度:中等
如图,已知几何体的下部是一个底面是边长为2的正六边形、侧面全为正方形的棱柱,上部是一个侧面全为等腰三角形的棱锥,其侧棱长都为manfen5.com 满分网
(1)证明:DF1⊥平面PA1F1
(2)求异面直线DF1与B1C1所成角的余弦值.

manfen5.com 满分网
详细信息
22. 难度:中等
已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足manfen5.com 满分网
(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.
详细信息
23. 难度:中等
已知数列{an},{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an-1bn-1+anbn=(n-1)•2n+1.
(1)若数列{bn}是首项为1和公比为2的等比数列,求数列{an}的通项公式;
(2)若数列{an}是等差数列,数列{bn}是否为等比数列?若是,请求出通项公式,若不是,请说明理由;   
(3)求证:manfen5.com 满分网
详细信息
24. 难度:中等
如图,椭圆manfen5.com 满分网的左右顶点分别为A、B,左右焦点分别为F1、F2,P为以F1、F2为直径的圆上异于F1、F2的动点,直线PF1、PF2分别交椭圆C于M、N和D、E.
(1)证明:manfen5.com 满分网为定值K;
(2)当K=-2时,问是否存在点P,使得四边形DMEN的面积最小,若存在,求出最小值和P坐标,若不存在,请说明理由.

manfen5.com 满分网
详细信息
25. 难度:中等
定理:若函数f(x)的图象在区间[a,b]上连续,且在(a,b)内可导,则至少存在一点ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a)成立.应用上述定理证明:
(1)manfen5.com 满分网;     
(2)设manfen5.com 满分网,Tn为数列{bn}的前n项和,求证:T2011-1<ln2011<T2010
(3)设f(x)=xn(n∈N*).若对任意的实数x,y,manfen5.com 满分网恒成立,求n所有可能的值.
详细信息
26. 难度:中等
设函数f(x)=ax•lnx(a>0).
(Ⅰ)当a=2时,判断函数g(x)=f(x)-4(x-1)的零点的个数,并且说明理由;
(Ⅱ)若对所有x≥1,都有f(x)≤x2-1,求正数a的取值范围.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.