1. 难度:中等 | |
已知全集为实数R,集合A={x|x2-1≤0},B={x|x<1},则A∩(∁RB)=( ) A.{x|-1≤x≤1} B.{x|-1≤x<1} C.ϕ D.{x|x=1} |
2. 难度:中等 | |
若复数(i为虚数单位)为非纯虚数,则实数m不可能 为( ) A.0 B.1 C.-1 D.2 |
3. 难度:中等 | |
如果过曲线y=x4-x上点P处的切线平行于直线y=3x+2,那么点P的坐标为( ) A.(1,0) B.(0,-1) C.(0,1) D.(-1,0) |
4. 难度:中等 | |
将函数y=sin2x+cos2x的图象向左平移个单位,所得图象的解析式是( ) A.y=cos2x+sin2 B.y=cos2x-sin2 C.y=sin2x-cos2 D.y=cosxsin |
5. 难度:中等 | |
等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列.若a1=1,则S4=( ) A.7 B.8 C.15 D.16 |
6. 难度:中等 | |
如图,在一个长为π,宽为2的矩形OABC内,曲线y=sinx(0≤x≤π)与x轴围成如图所示的阴影部分,向矩形OABC内随机投一点(该点落在矩形OABC内任何一点是等可能的),则所投的点落在阴影部分的概率是( ) A. B. C. D. |
7. 难度:中等 | |
执行程序框图,若输出的n=5,则输入整数p的最小值是( ) A.7 B.8 C.15 D.16 |
8. 难度:中等 | |
设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β、那么( ) A.①是真命题,②是假命题 B.①是假命题,②是真命题 C.①②都是真命题 D.①②都是假命题 |
9. 难度:中等 | |
已知双曲线的左焦点为F,A(a,0),B(0,b),当时,则该双曲线的离心率e等于( ) A. B. C. D. |
10. 难度:中等 | |
在平面直角坐标系中,横纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(k∈N*)个格点,则称函数f(x)为k阶格点函数.对下列4个函数:①;②;③f(x)=3π(x-1)2+2;④f(x)=log0.5x;其中是一阶格点函数的有( ) A.①③ B.②③ C.③④ D.①④ |
11. 难度:中等 | |
在平面几何中,已知“正三角形内一点到三边距离之和是一个定值”,类比到空间写出你认为合适的结论: . |
12. 难度:中等 | |
一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为 . |
13. 难度:中等 | |
已知企业生产汽车甲种配件每万件要用A原料3吨,B原料2吨;乙种配件每万件要用A原料1吨,B原料3吨;甲配件每件可获利5元,乙配件每件可获利3元,现有A原料不超过13吨,B原料不超过18吨,利用现有原料该企业可获得的最大利润是 万. |
14. 难度:中等 | |
在△ABC中,角A,B,C所对的边分别是a,b,c,若b2+c2=a2-bc,,则△ABC的面积等于 . |
15. 难度:中等 | |
A.(不等式选做题)不等式|≤1的实数解集为 . B.(几何证明选做题)如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.则= . C.(坐标系与参数方程选做题)若△ABC的底边BC=10,∠B=2∠A,以B点为极点,BC 为极轴,则顶点A 的极坐标方程为 . |
16. 难度:中等 | |
函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)在一个周期内,当时,y取最小值-3;当时,y最大值3. (I)求f(x)的解析式; (II)求f(x)在区间上的最值. |
17. 难度:中等 | |
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3. (1)求数列{an}的通项公式; (2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值. |
18. 难度:中等 | |
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为. (1)在线段DC上是否存在一点F,使得EF⊥面DBC,若存在,求线段DF的长度,若不存在,说明理由; (2)求二面角D-EC-B的平面角的余弦值. |
19. 难度:中等 | |
某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为; (1)求该小组中女生的人数; (2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望. |
20. 难度:中等 | |
已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合. (1)求椭圆C的方程; (2)过点S(,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由. |
21. 难度:中等 | |
已知函数f(x)=x2+lnx-ax. (Ⅰ)当a=3时,求f(x)的单调增区间; (Ⅱ)若f(x)在(0,1)上是增函数,求a得取值范围; (Ⅲ)在(Ⅱ)的结论下,设g(x)=x2+|x-a|,(1≤x≤3),求函数g(x)的最小值. |