1. 难度:中等 | |
设A={(x,y)||x+2|+=0},B={-2,-1}则必有( ) A.A⊇B B.A⊆B C.A=B D.A∩B=∅ |
2. 难度:中等 | |
设z=1+i(i是虚数单位),则=( ) A.-1-i B.-1+i C.1-i D.1+i |
3. 难度:中等 | |
已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则是l1∥l2的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 |
4. 难度:中等 | |
等比数列{an}中,a3=6,前三项和S3=∫34xdx则公比q的值为( ) A.1 B.- C.1或- D.-1或- |
5. 难度:中等 | |
在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有( ) A.24种 B.48种 C.96种 D.144种 |
6. 难度:中等 | |
将函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心( ) A. B. C.() D.() |
7. 难度:中等 | |
设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ) A.m∥β且l∥α B.m∥l1且n∥l2 C.m∥β且n∥β D.m∥β且n∥l2 |
8. 难度:中等 | |
定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( ) A.y=x2+1 B.y=|x|+1 C.y= D.y= |
9. 难度:中等 | |
(平面向量)已知||=||=||=1,则|+|的值为 . |
10. 难度:中等 | |
已知某几何体的三视图如图所示,则该几何体的体积为 . |
11. 难度:中等 | |
点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧的长度小于1的概率为 . |
12. 难度:中等 | |
2009年北京国庆阅兵式上举行升旗仪式,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为米,则旗杆的高度为 米. |
13. 难度:中等 | |||||||||||
某单位为了了解用电量y(度)与气温x(°C)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
. |
14. 难度:中等 | |
若P(2,-1)为曲线(0≤θ<2π)的弦的中点,则该弦所在直线的普通方程为 . |
15. 难度:中等 | |
如图PM为圆O的切线,T为切点,,圆O的面积为2π,则PA= . |
16. 难度:中等 | |
已知函数(0<θ<π)在x=π处取最小值. (1)求θ的值; (2)在△ABC中,a,b,c分别为角A,B,C的对边,已知,求角C. |
17. 难度:中等 | |
某工厂2010年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会: (1)问A、B、C、D型号的产品各抽取多少件? (2)从50件样品随机的抽取2件,求这2件产品恰好是不同型号产品的概率; (3)从A、C型号的产品中随机的抽取3件,用ξ表示抽取A种型号的产品件数,求ξ的分布列和数学期望. |
18. 难度:中等 | |
如图甲,直角梯形ABCD中,AB∥CD,∠DAB=,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙). (1)求证:AB∥平面DNC; (2)当DN的长为何值时,二面角D-BC-N的大小为30°? |
19. 难度:中等 | |
A、B两城相距30km,现计划在两城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城A的影响度与厂址到城A的距离的平方成反比(比例系数k为正数),对城B的影响度也与厂址到城B的距离的平方成反比,且当厂址在弧的中点时,对城B的影响度是对城A的影响度的四倍, (1)试将总影响度y(对两城的影响度之和)表示成厂址到城A的距离x的函数; (2)是否存在一点,使建在此处的垃圾处理厂对两城的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由. |
20. 难度:中等 | |
已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q. (1)求椭圆C的标准方程; (2)若点P的坐标为(1,1),求证:直线PQ与圆O相切; (3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由. |
21. 难度:中等 | |
已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2). (1)求证:{an+1+2an}是等比数列; (2)求数列{an}的通项公式; (3)设3nbn=n(3n-an),且|b1|+|b2|++|bn|<m对于n∈N*恒成立,求m的取值范围. |