相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2012年江西省新余一中高考数学一模试卷(理科)(解析版)
一、选择题
详细信息
1. 难度:中等
已知复数z=i(1+i)(i为虚数单位),则复数z在复平面上所对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
详细信息
2. 难度:中等
集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1|},若集合A∩B=∅,则实数a的取值范围是( )
A.(-∞,1]
B.(-∞,1)
C.(1,+∞)
D.R
详细信息
3. 难度:中等
已知向量manfen5.com 满分网=(cosa,-2),manfen5.com 满分网=(sina,1)且manfen5.com 满分网manfen5.com 满分网,则tan(a-manfen5.com 满分网)等于( )
A.3
B.-3
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
4. 难度:中等
等差数列{an}的前n项和Sn满足S20=S40,下列结论中一定正确的是( )
A.S30是Sn中的最大值
B.S30是Sn中的最小值
C.S30=0
D.S60=0
详细信息
5. 难度:中等
已知t>0,若manfen5.com 满分网(2x-1)dx=6,则t的值等于( )
A.2
B.3
C.6
D.8
详细信息
6. 难度:中等
设变量x,y满足约束条件manfen5.com 满分网,则manfen5.com 满分网的最大值为( )
A.manfen5.com 满分网
B.3
C.4
D.6
详细信息
7. 难度:中等
把边长为1的正方形ABCD沿对角线BD折起形成三棱锥C-ABD的主视图与俯视图如图所示,则左视图的面积为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
8. 难度:中等
函数f(a)=(3m-1)a+b-2m,当m∈[0,1]时,0≤f(a)≤1恒成立,则manfen5.com 满分网的最大值与最小值之和为( )
A.18
B.16
C.14
D.manfen5.com 满分网
详细信息
9. 难度:中等
函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x,f(x))处的切线为:l:y=g(x)=f′(x)(x-x)+f(x),F(x)=f(x)-g(x),如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x<b,那么( )

manfen5.com 满分网
A.F′(x)=0,x=x是F(x)的极大值点
B.F′(x)=0,x=x是F(x)的极小值点
C.F′(x)≠0,x=x不是F(x)极值点
D.F′(x)≠0,x=x是F(x)极值点
详细信息
10. 难度:中等
函数y=manfen5.com 满分网的图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于( )
A.2
B.4
C.6
D.8
二、解答题
详细信息
11. 难度:中等
如果执行的程序框图如图所示,那么输出的S=   
manfen5.com 满分网
详细信息
12. 难度:中等
抛物线y2=4x的焦点为F,准线为l,点M(4,4)是抛物线上一点,则经过点F,M且与l相切的圆共有    个.
详细信息
13. 难度:中等
在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图1所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图2所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是   
manfen5.com 满分网
详细信息
14. 难度:中等
定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,manfen5.com 满分网则f(log220)=   
详细信息
15. 难度:中等
(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分)
(A)在极坐标系中,过点(2manfen5.com 满分网manfen5.com 满分网)作圆ρ=4sinθ的切线,则切线的极坐标方程为   
(B)已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为   
详细信息
16. 难度:中等
已知向量manfen5.com 满分网=(sinA,cosA),manfen5.com 满分网=(manfen5.com 满分网,-1),manfen5.com 满分网manfen5.com 满分网=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
详细信息
17. 难度:中等
已知各项均为正数的数列{an}的首项a1=1,且log2an+1=log2an+1,
数列{bn-an}是等差数列,首项为1,公差为2,其中n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn
详细信息
18. 难度:中等
如图,四棱锥P-ABCD中,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,直线PD与底面ABCD所成的角等于30°,manfen5.com 满分网manfen5.com 满分网(0<λ<1).
(1)若EF∥平面PAC,求λ的值;
(2)当BE等于何值时,二面角P-DE-A的大小为45°?

manfen5.com 满分网
详细信息
19. 难度:中等
已知函数f(x)=ax2-2x+lnx.
(Ⅰ)若f(x)无极值点,但其导函数f'(x)有零点,求a的值;
(Ⅱ)若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于manfen5.com 满分网
详细信息
20. 难度:中等
在平面直角坐标系XOY中,已知定点A(0,a),B(0,-a),M,N是x轴上两个不同的动点,manfen5.com 满分网,直线AM与直线BN交于C点.
(1)求点C的轨迹方程;
(2)若存在过点(0,-1)且不与坐标轴垂直的直线l与点C的轨迹交于不同的两点E、F,且|AE|=|AF|,求实数a的取值范围.
详细信息
21. 难度:中等
对于函数f(x),若存在xo∈R,使f(xo)=xo成立,则称xo为f(x)的不动点.如果函数f(x)=manfen5.com 满分网(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-manfen5.com 满分网
(1)试求函数f(x)的单调区间;
(2)已知各项不为零的数列{an}满足4Sn•f(manfen5.com 满分网)=1,求证:-manfen5.com 满分网<lnmanfen5.com 满分网<-manfen5.com 满分网
(3)设bn=-manfen5.com 满分网,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.