1. 难度:中等 | |
计算:= (i为虚数单位). |
2. 难度:中等 | |
若集合A={x|2x+1>0},B={x||x-1|<2},则A∩B= . |
3. 难度:中等 | |
函数f(x)=的值域是 . |
4. 难度:中等 | |
若=(-2,1)是直线l的一个法向量,则l的倾斜角的大小为 (结果用反三角函数值表示). |
5. 难度:中等 | |
在的二项展开式中,常数项等于 . |
6. 难度:中等 | |
有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,Vn,…,则(V1+V2+…+Vn)═ . |
7. 难度:中等 | |
已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是 . |
8. 难度:中等 | |
若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . |
9. 难度:中等 | |
已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)= . |
10. 难度:中等 | |
如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)= . |
11. 难度:中等 | |
三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). |
12. 难度:中等 | |
在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是 . |
13. 难度:中等 | |
已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为 . |
14. 难度:中等 | |
如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是 . |
15. 难度:中等 | |
若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则( ) A.b=2,c=3 B.b=-2,c=3 C.b=-2,c=-1 D.b=2,c=-1 |
16. 难度:中等 | |
在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 |
17. 难度:中等 | |
设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则( ) A.Dξ1>Dξ2 B.Dξ1=Dξ2 C.Dξ1<Dξ2 D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关 |
18. 难度:中等 | |
设an=sin,Sn=a1+a2+…+an,在S1,S2,…S100中,正数的个数是( ) A.25 B.50 C.75 D.100 |
19. 难度:中等 | |
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求: (1)三角形PCD的面积; (2)异面直线BC与AE所成的角的大小. |
20. 难度:中等 | |
已知f(x)=lg(x+1) (1)若0<f(1-2x)-f(x)<1,求x的取值范围; (2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数. |
21. 难度:中等 | |
海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设: ①失事船的移动路径可视为抛物线; ②定位后救援船即刻沿直线匀速前往救援; ③救援船出发t小时后,失事船所在位置的横坐标为7t (1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向. (2)问救援船的时速至少是多少海里才能追上失事船? |
22. 难度:中等 | |
在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1. (1)过C1的左顶点引C1的一条渐进线的平行线,求该直线与另一条渐进线及x轴围成的三角形的面积; (2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ; (3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值. |
23. 难度:中等 | |
对于数集X={-1,x1,x2,…,xn},其中0<x1<x2<…<xn,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{-1,1,2}具有性质P. (1)若x>2,且{-1,1,2,x}具有性质P,求x的值; (2)若X具有性质P,求证:1∈X,且当xn>1时,x1=1; (3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,xn的通项公式. |