1. 难度:中等 | |
已知全集U=R,集合A={},B={x|0<x<3),那么(C∪A)∩B等于( ) A..{x|l≤x≤3} B..{x|l≤x<3} C.,{x|l<x<3} D..{x|l<x<3} |
2. 难度:中等 | |
若(a,b是实数,i是虚数单位),则复数z=a+bi对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
3. 难度:中等 | |
若数列{an}是等比数列,且a2=2,a1a2=9,则数列{an}的公比是( ) A. B. C.或- D.-或 |
4. 难度:中等 | |
已知定义域为R的函数y=f(x)在(1,+∞)上是增函数,且函数y=f(x+1)是偶函数,那么( ) A.f(O)<f(-1)<f(4) B.f(0)<f(4)<f(-1) C.f(4)<f(=1)<f(0) D.f(-1)<f(O)<f(4) |
5. 难度:中等 | |
若某多面体的三视图(单位:cm) 如图所示,则此多面体外接球的表面积是( ) A.4πcm2 B.3πcm2 C.2πcm2 D.πcm2 |
6. 难度:中等 | |
已知m、n表示直线,α,β,γ表示平面,给出下列四个命题,其中真命题为 (1)α∩β=m.n⊂α,n⊥m,则α⊥β (2)α⊥β,α∩γ=m,β∩γ=n,则n⊥m (3)m⊥α,m⊥β,则α∥β (4)m⊥α,n⊥β,m⊥n,则α⊥β( ) A.(1)、(2) B.(3)、(4) C.(2)、(3) D.(2)、(4) |
7. 难度:中等 | |
已知的值为( ) A.-8 B.8 C. D. |
8. 难度:中等 | |
设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是( ) A. B. C. D. |
9. 难度:中等 | |
已知圆的方程为x2+y2=4,若抛物线过点A(-1,0),B(1,0),且以圆的切线为准线,则抛物线的焦点轨迹方程为( ) A. B. C. D. |
10. 难度:中等 | |
在△ABC中,已知,sinB=cosA•sinC,S△ABC=6,P为线段AB上的一点,且.,则的最小值为( ) A. B. C. D. |
11. 难度:中等 | |
在的展开式中,x2项的系数为 . |
12. 难度:中等 | |
设0为坐标原点,点M坐标为(2,1),点N(x,y)满足不等式组:,则的最大值为 . |
13. 难度:中等 | |
执行如图所示的程序框图,输出的i的值为 . |
14. 难度:中等 | |
如图所示的茎叶图记录了一组数据,关于这组数据,其中说法正 确的序号是 ①众数是9;②平均数是10;③中位数是9或10;④标准差是3.4. |
15. 难度:中等 | |
如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕点C旋转后与点B绕点P旋转后重合于点D.设CP=x,△CPD的面积为f(x).则f(x)的定义域为 ; f′(x)的零点是 . |
16. 难度:中等 | |
在△ABC中,角A,B,C所对的边分别为a,b,c,角A,B,C依次成等差数列. (1)若sin2B-sinAsinC,试判断△ABC的形状; (2)若△ABC为钝角三角形,且a>c,试求的取值范围. |
17. 难度:中等 | |
在淮北市高三“一模”考试中,某校甲、乙、丙、丁四名同学,在学校年级名次依次为l,2,3,4名,如果在“二模”考试中的前4名依然是这四名同学. (1)求“二模”考试中恰好有两名同学排名不变的概率; (2)设“二模”考试中排名不变的同学人数为X,求X分布列和数学期望. |
18. 难度:中等 | |
设函数 (1)写出定义域及f′(x)的解析式, (2)设a>O,讨论函数y=f(x)的单调性. |
19. 难度:中等 | |
如图所示,三棱柱ABC-A1B1Cl中,AB=AC=AA1=2,面ABC1⊥面AAlClC,∠AAlCl=∠BAC1=60, AC1与A1C相交于0. (1)求证.BO上面AAlClC; (2)求三棱锥C1-ABC的体积; (3)求二面角A1-B1C1-A的余弦值. |
20. 难度:中等 | |
已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)P(2,3),Q(2,-3)是椭圆上两点,A、B是椭圆位于直线PQ两侧的两动点, ( i)若直线AB的斜率为,求四边形APBQ面积的最大值; ( ii)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由. |
21. 难度:中等 | |
设函数方程f(x)=x有唯一的解,已知f(xn)=xn+1(n∈N﹡)且 (1)求证:数列{}是等差数列; (2)若,求sn=b1+b2+b3+…+bn; (3)在(2)的冬件下,若不等式对一切n∈N﹡均成立,求k的最大值. |