1. 难度:中等 | |
已知集合,,则A∩B( ) A.(-1,2) B.[-1,2] C.(-1,1] D.(-1,1) |
2. 难度:中等 | |
已知复数,是z的共轭复数,则=( ) A. B. C.1 D.2 |
3. 难度:中等 | |
已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( ) A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥β C.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n |
4. 难度:中等 | |
的展开式x2的系数是( ) A.-6 B.-3 C.0 D.3 |
5. 难度:中等 | |
已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( ) A.y=2x-1 B.y= C.y=3x-2 D.y=-2x+3 |
6. 难度:中等 | |
设A(a,1),B(2,b),C(4,5)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则a与b满足的关系式为( ) A.4a-5b=3 B.5a-4b=3 C.4a+5b=14 D.5a+4b=14 |
7. 难度:中等 | |
函数的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象( ) A.关于点对称 B.关于点对称 C.关于直线对称 D.关于直线对称 |
8. 难度:中等 | |
设,则( ) A.a>b>c B.a>c>b C.b>a>c D.b>c>a |
9. 难度:中等 | |
等差数列{an}的前n项和为Sn,已知an-1+an+1-an2=0,S2n-1=38,则n=( ) A.38 B.20 C.10 D.9 |
10. 难度:中等 | |
已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是( ) A.(0,1) B.(0,] C.(0,) D.[,1) |
11. 难度:中等 | |||||||||
已知函数f(x)的定义域为[-2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是( )
A. B. C. D. |
12. 难度:中等 | |
已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为( ) A. B. C. D. |
13. 难度:中等 | |
将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有种 (用数字作答) |
14. 难度:中等 | |
已知双曲线E的中心为原点,P(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E的方程式为 . |
15. 难度:中等 | |
如图,是某四棱锥的三视图,则该几何体的表面积为 . |
16. 难度:中等 | |
甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是 (写出所有正确结论的编号). ①; ②; ③事件B与事件A1相互独立; ④A1,A2,A3是两两互斥的事件; ⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关. |
17. 难度:中等 | |
在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列. (1)求角B的大小; (2)求2sin2A+cos(A-C)的取值范围. |
18. 难度:中等 | |
在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG. (Ⅰ)确定点G的位置; (Ⅱ)求直线AC1与平面EFG所成角θ的大小. |
19. 难度:中等 | |
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润. (1)求上表中的a,b值; (2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率P(A); (3)求η的分布列及数学期望Eη. |
20. 难度:中等 | |
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响. (Ⅰ)求至少有1人面试合格的概率; (Ⅱ)求签约人数ξ的分布列和数学期望. |
21. 难度:中等 | |
已知函数f(x)=ln(2-x)+a(x-2)(a∈R,e是自然对数的底) (1)求f(x)的单调区间; (2)当a>0时,若方程f(x)-b=0在区间上有两个不同的实根,求证:1-e-lna≤b<-1-lna. |
22. 难度:中等 | |
已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由. |
23. 难度:中等 | |
如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (I)求证:AD∥EC; (II)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长. |