1. 难度:中等 | |
如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是( ) A.() B.(1,2) C.(,1) D.(2,3) |
2. 难度:中等 | |
如图中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=( ) A. B.- C. D.-或 |
3. 难度:中等 | |
设函数, (1)对于任意实数x,f'(x)≥m恒成立,求m的最大值; (2)若方程f(x)=0有且仅有一个实根,求a的取值范围. |
4. 难度:中等 | |
设函数x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (2)求函数f(x)的单调区间与极值; (3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围. |
5. 难度:中等 | |
已知函数f(x)=x2+ln x-1. (1)求函数f(x)在区间[1,e](e为自然对数的底)上的最大值和最小值; (2)求证:在区间(1,+∞)上,函数f(x)的图象在函数g(x)=x3的图象的下方; (3)求证:[f′(x)]n-f′(xn)≥2n-2 (n∈N*). |
6. 难度:中等 | |
已知函数f(x)=x3+(1-a) x2-a(a+2)x+b(a,b∈R). (I)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值; (Ⅱ)若函数f(x)在区间(-1,1)上不单调,求a的取值范围. |
7. 难度:中等 | |
已知函数,其中a>0. (1)若f(x)在x=1处取得极值,求a的值; (2)求f(x)的单调区间; (3)若f(x)的最小值为1,求a的取值范围. |
8. 难度:中等 | |
已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10. (1)求函数f(x)的解析式; (2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值. |
9. 难度:中等 | |
若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( ) A. B. C. D. |