1. 难度:中等 | |
若集合M={x|x2>4},N={x|1<x≤3},则N∩(CRM)=( ) A.{x|-2≤x<1} B.{x|-2≤x≤2} C.{x|1<x≤2} D.{x|x<2} |
2. 难度:中等 | |
已知i为虚数单位,a为实数,复数z=(a-2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 |
3. 难度:中等 | |
有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A. B. C. D. |
4. 难度:中等 | |
阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是( ) A.(-∞,-2] B.[-2,-1] C.[-1,2] D.[2,+∞) |
5. 难度:中等 | |
已知实数a,b,c,d成等比数列,且对函数y=ln(x+2)-x,当x=b时取到极大值c,则ad等于( ) A.-1 B.0 C.1 D.2 |
6. 难度:中等 | |
下列有关命题的说法正确的是( ) A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” B.“x=-1”是“x2-5x-6=0”的必要不充分条件 C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0” D.命题“若x=y,则sinx=siny”的逆否命题为真命题 |
7. 难度:中等 | |
若函数f(x)满足f(x+1)=f(x-1),且当x∈[-1,1]时,f(x)=x2,则函数y=f(x)与函数y=lgx的图象的交点个数为( ) A.8个 B.9个 C.10个 D.11个 |
8. 难度:中等 | |
设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(-x)=f(x),则( ) A.f(x)在单调递减 B.f(x)在(,)单调递减 C.f(x)在(0,)单调递增 D.f(x)在(,)单调递增 |
9. 难度:中等 | |
设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则的最小值为( ) A. B. C.1 D.4 |
10. 难度:中等 | |
已知f(x)=()x-log2x,实数a、b、c满足f(a)f(b)f(c)<0,(0<a<b<c)若实数x是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是( ) A.x<a B.x>b C.x<c D.x>c |
11. 难度:中等 | |
展开式的常数项是 .(结果用数值作答) |
12. 难度:中等 | |
同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖 块. |
13. 难度:中等 | |
已知,,如果与的夹角为锐角,则λ的取值范围是 . |
14. 难度:中等 | |
给出下列三个命题: ①若直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2; ②双曲线的离心率为; ③若,则这两圆恰有2条公切线; ④若直线l1:a2x-y+6=0与直线l2:4x-(a-3)+9-0互相垂直,则a=-1. 其中正确命题的序号是 .(把你认为正确命题的序号都填上) |
15. 难度:中等 | |
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分) (1)(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于 . (2)(不等式选讲选做题)若存在实数x满足|x-3|+|x-m|<5,则实数m的取值范围为 . (3)(极坐标与参数方程选讲选做题)设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数有 个. |
16. 难度:中等 | |
已知函数f(x)=Asin(wx+φ),(A>0,w>0,|φ|<,x∈R)的图象的一部分如图所示. (1)求函数f(x)的解析式; (2)当x∈[-6,]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值. |
17. 难度:中等 | |
已知函数f(x)=x2-2(n+1)x+n2+5n-7. (Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列; (Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn. |
18. 难度:中等 | |
已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形. (Ⅰ)证明:BN⊥平面C1NB1; (Ⅱ)求平面CNB1与平面C1NB1所成角的余弦值; |
19. 难度:中等 | |||||||||||||||||||||||||||||
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX. |
20. 难度:中等 | |
已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点. (Ⅰ)求椭圆的标准方程; (Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值; (Ⅲ)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程,并说明轨迹是什么曲线. |
21. 难度:中等 | |
已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值; (Ⅱ)求f(x)的单调区间; (Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围. |